Sunlight

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Sunlight

  • full sunlight
  • natural sunlight
  • simulated sunlight

  • Terms modified by Sunlight

  • sunlight exposure

  • Selected Abstracts


    Synthesis of Fullerene-like Cs2O Nanoparticles by Concentrated Sunlight,

    ADVANCED MATERIALS, Issue 22 2006
    A. Albu-Yaron
    Application of a solar-driven synthesis approach for the production of fullerene-like Cs2O nanoparticles is presented (see figure). The synthesis is performed directly in evacuated quartz ampoules containing a Cs2O crystallite precursor under continuous irradiation with highly concentrated sunlight. Closed-cage nested Cs2O structures are obtained in a variety of shapes and dimensions. These structures are rather stable, a significant advantage for photoemissive applications involving Cs2O coatings. [source]


    Brandeis' Policeman: Results from a Laboratory Experiment on How to Prevent Corporate Fraud

    JOURNAL OF EMPIRICAL LEGAL STUDIES, Issue 2 2008
    Michael D. Guttentag
    We use a laboratory experiment to study how to prevent corporate fraud. Our experiment is the first to replicate the salient features of corporate fraud in a controlled setting. We find that requiring additional disclosures significantly reduces fraud. This finding runs counter to implications from previous research, but that research does not include many of the defining aspects of corporate fraud. Our results support the federal government's continued reliance on disclosure as a way to reduce fraud, a reliance that dates back to Louis Brandeis' observation that "publicity is justly commended as a remedy for social and industrial diseases. Sunlight is said to be the best of disinfectants; electric light the most efficient policeman." [source]


    Enhanced Bactericidal Activity of Modified Titania in Sunlight against Pseudomonas aeruginosa, a Water-Borne Pathogen

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2010
    S. Swetha
    Photocatalyst-mediated inactivations generate reactive oxygen species and OH radicals, which induce oxidative destruction of membrane integrity, causing damage to membrane phospholipids of gram negative bacteria like Pseudomonas aeruginosa. Nanosized TiO2 was synthesized by gel to crystalline conversion and Zr-doped TiO2 was synthesized by pulverization using appropriate precursor. The doped nanocrystals retained the anatase phase with a marginal increase in crystallite size, averaging at 25 nm. SEM,EDX analysis of the doped sample depicts the substantial growth of grain size with 1.33 atomic weight % of zirconium. The created electron states in the doped sample act as charge carrier traps suppressing recombination which later detraps the same to the surface of the catalyst causing enhanced interfacial charge transfer. Zr-doped TiO2 at the molecular scale exhibits better photocatalytic activity with lower bandgap energy that can respond to visible light. The redshift caused by the dopants in absorption spectra of TiO2 facilitated the nonintrinsic sample to exhibit nearly 2-fold enhancement of photoinactivation in sunlight. Extent of photoinactivation of P. aeruginosa was observed to be complete (100%) within 150 min of sunlight exposure in the presence of modified TiO2. [source]


    Inactivation of Virulent Burkholderia pseudomallei by Sunlight

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2009
    Jose-Luis Sagripanti
    The goal of this study was to determine the sensitivity of virulent Burkholderia pseudomallei to natural sunlight. We describe solar dosimetry calibrated to integrate radiation between 295 and 305 nm and an exposure system that minimizes thermal effects on bacterial cells. Burkholderia pseudomallei cells were either exposed to sunlight in UV transparent dishes or maintained in the dark covered by opaque foil. The cells maintained in the dark remained at constant levels for the duration of all experiments. The exposed cells nearby were killed with a kinetic studied through 5 Log10 inactivation. We found that cells in stationary phase of growth were nearly two-fold more resistant to sunlight than cells in lag or exponential growth. A virulent strain of B. pseudomallei that produced mucoid colonies showed sensitivity to sunlight similar to both a virulent strain that produced nonmucoid colonies and a strain of B. thailandensis. The inactivation of B. pseudomallei by sunlight in different types of water of environmental relevance or inside amoebae was investigated. The sensitivity of virulent B. pseudomallei was calculated and its comparison with previous studies employing monochromatic germicidal light (254 nm) is discussed. This may be the first report in the open literature of the inactivation of a virulent biological threat agent by natural sunlight. These data should assist in estimating the risk for contracting melioidosis and in predicting the time period during which B. pseudomallei remains infectious after an accidental or intentional release in the environment. [source]


    Common Fluorescent Sunlamps are an Inappropriate Substitute for Sunlight ,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2000
    Douglas B. Brown
    ABSTRACT Fluorescent sunlamps are commonly employed as convenient sources in photobiology experiments. The ability of Kodacel to filter photobiologically irrelevant UVC wavelengths has been described. Yet there still remains a major unaddressed issue,the over representation of UVB in the output. The shortest terrestrial solar wavelengths reaching the surface are ,295 nm with the 295,320 nm range comprising ,4% of the solar UV irradiance. In Kodacel-filtered sunlamps, 47% of the UV output falls in this range. Consequently, in studies designed to understand skin photobiology after solar exposure, the use of these unfiltered sunlamps may result in misleading, or even incorrect conclusions. To demonstrate the importance of using an accurate representation of the UV portion of sunlight, the ability of different ultraviolet radiation (UVR) sources to induce the expression of a reporter gene was assayed. Unfiltered fluorescent sunlamps (FS lamps) induce optimal chloramphenicol acetyltransferase (CAT) activity at apparently low doses (10,20 J/cm2). Filtering the FS lamps with Kodacel raised the delivered dose for optimal CAT activity to 50,60 mJ/cm2. With the more solar-like UVA-340 lamps somewhat lower levels of CAT activities were induced even though the apparent delivered doses were significantly greater than for either the FS or Kodacel-filtered sunlamp (KFS lamps). When DNA from parallel-treated cells was analyzed for photoproduct formation by a radioimmuneassay, it was shown that the induction of CAT activity correlated with the level of induced photoproduct formation regardless of the source employed. [source]


    Effect of daytime light conditions on sleep habits and morningness,eveningness preference of Japanese students aged 12,15 years

    PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 3 2002
    TETSUO HARADA phd
    Abstract The effect of daytime light conditions on the sleep habits and morning,evening preference of Japanese junior high school students (415 girls and 411 boys; age range, 12,15 years old) was studied. Students who were outdoors during the short break between classes or their lunch-time break were more morning-type people than those who remained indoors. Students who shut out the light from outside showed longer subjective sleep latency and appealed more shallow sleep rather than those who did not. Sunlight can be an important factor for the timing of sleep based on the circadian system of Japanese young students. [source]


    Thrips see red , flower colour and the host relationships of a polyphagous anthophilic thrips

    ECOLOGICAL ENTOMOLOGY, Issue 5 2007
    A. YAKU
    Abstract 1.,The common blossom thrips, Frankliniella schultzei, is a polyphagous anthophilic species that colonises a wide range of host-plant species across different plant taxa. The environmental cues used by these polyphagous insects to recognise and locate host plants are not known. We therefore determined if colour is an important environmental signal used by F. schultzei to recognise flowers of eight of its more significant host-plant species. 2.,The effect of flower colour on the colonisation of different host plant species by F. schultzei was investigated by collecting and analysing the following: (a) numbers of thrips from different heights and aspects of the primary host plant Malvaviscus arboreus, (b) thrips distribution within flowers of Hibiscus rosasinensis, (c) colour reflectance from flowers of eight different host-plant species, and (d) reflectance from different coloured sticky traps and the number of thrips trapped on them at different times of the day and on different dates. 3.,The results indicate that: (a) the thrips (both sexes) concentrate towards the top of the primary host plant M. arboreus and are not distributed differentially according to sunny or shady aspect of the plant, (b) the number of female thrips on H. rosasinensis was higher in anthers compared to petals (corolla) and the basal parts of the flower, and males were as numerous on the petals as were females, and (c) there is a common floral reflectance pattern (but with different intensities) across the eight host plant species, mainly in the red part of the spectrum (600,700 nm). 4.,Results of colour sticky trapping show that red attracts more female thrips compared to any other colour and that most were caught between 09.00 and 11.00 hours. By contrast, more male thrips were trapped between 07.00 and 09.00 hours. Males were more evenly distributed across the different colours but the highest numbers were associated with the yellow traps. 5.,The higher densities of thrips at the top of their host plant may be related to the early morning (07.00,11.00 hours) activity of the thrips, when the top portions of the plant are more exposed to sunlight. The sex-related distributions of F. schultzei thrips across time, coloured sticky traps, and various parts of the flowers seem to be related to mating swarm formation by the males, on the one hand, and the relative frequency and intensity of the use of M. arboreus by the females, on the other, as a feeding and oviposition site. Frankliniella schultzei females respond more strongly to red than to any other colours, so it is predicted that the spectral properties of colour recognition by this species will correlate with the predominant red reflectance of its primary host, M. arboreus, and that there may well be a sex-related difference in colour recognition within this species. [source]


    Descriptions and biological notes of Ctenoplectra bees from Southeast Asia and Taiwan (Hymenoptera: Apidae: Ctenoplectrini) with a new species from North Borneo

    ENTOMOLOGICAL SCIENCE, Issue 3 2009
    I-Hsin SUNG
    Abstract Six Ctenoplectra species are recorded from Southeast Asia and Taiwan. They are C. chalybea Smith, C. cornuta Gribodo, C. davidi Vachal, C. elsei Engel, C. sandakana sp. nov. and C. vagans Cockerell. Females of C. sandakana sp. nov. from North Borneo are similar to the mainland species C. chalybea, but differ mainly in the clypeal keel and the length of the antennal segments. The small blackish species, C. cornuta, is distributed in Myanmar, China and Taiwan and C. davidi is distributed in China, Russia and Taiwan; both species are seen at the flowers of Thladiantha. Ctenoplectra chalybea was collected from the Malay Peninsula, Myanmar, Taiwan and Vietnam. Ctenoplectra apicalis Smith and C. kelloggi Cockerell are allied to C. chalybea; however, C. kelloggi is excluded from this study due to insufficient material. A key to the six known Ctenoplectra species is given. The large metallic species, C. chalybea and C. elsei, visit flowers of Momordica cochinchinensis (Lour.) Spreng. For the first time observations on the nest structures of C. chalybea and C. cornuta are presented. They choose remarkable places, such as artificial structures and buildings, for nest sites. The nest architecture prevents rain and direct sunlight from entering the nest. Bees used pre-existing holes or crevices in wood for nesting shelters and collected soil and appeared to mix it with some other substance to build nests. The cell lining materials and rubbing behaviors against the cell wall suggest that Ctenoplectra bees use floral oil mainly for cell lining materials. [source]


    Water soluble fraction of solar-simulated light-exposed crude oil generates phosphorylation of histone H2AX in human skin cells under UVA exposure

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2007
    Yuko Ibuki
    Abstract Crude oil contains compounds, which have toxic and cancer-causing properties to humans. The oil spilled in environments is usually exposed to sunlight; however, the toxicity of sunlight-exposed oil is poorly understood. In this study, we found that the water soluble fraction (WSF) of crude oil irradiated with solar-simulated light (SSL) generated phosphorylation of histone H2AX (,-H2AX) in human skin cells under UVA irradiation, which was due to the formation of DNA double strand breaks (DSBs). Crude oil was exposed to SSL for ,7 days. The WSF obtained from unexposed crude oil showed no toxicity, whereas the WSF obtained from crude oil pre-exposed to SSL induced acute cell death on exposure to UVA irradiation (induction of phototoxicity), which was more remarkable in human skin fibroblasts than human skin keratinocytes. ,-H2AX was detected in both cell lines immediately after treatment with the WSF plus UVA. Interestingly, ,-H2AX was detectable even at low SSL- and UVA-doses, which induced no cytotoxicity. The WSF of crude oil irradiated with SSL, generated DSBs under UVA irradiation, which were detected by biased sinusoidal field gel electrophoresis. This was confirmed using xrs-5 cells isolated from CHO-K1 cells, which are deficient in a repair enzyme for DSBs; the WSF plus UVA induced a more dramatic decrease in survival in xrs-5 cells than CHO-K1 cells. These findings demonstrate that exposure of crude oil to sunlight makes the WSF phototoxic, generating DSBs accompanying the appearance of ,-H2AX in human skin cells. Environ. Mol. Mutagen., 2007. © 2007 Wiley-Liss, Inc. [source]


    Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments

    ENVIRONMENTAL MICROBIOLOGY, Issue 4 2008
    Adrian K. Sharma
    Summary Proteorhodopsins are light-energy-harvesting transmembrane proteins encoded by genes recently discovered in the surface waters of the world's oceans. Metagenomic data from the Global Ocean Sampling expedition (GOS) recovered 2674 proteorhodopsin-related sequences from 51 aquatic samples. Four of these samples were from non-marine environments, specifically, Lake Gatun within the Panama Canal, Delaware Bay and Chesapeake Bay and the Punta Cormorant Lagoon in Ecuador. Rhodopsins related to but phylogenetically distinct from most sequences designated proteorhodopsins were present at all four of these non-marine sites and comprised three different clades that were almost completely absent from marine samples. Phylogenomic analyses of genes adjacent to those encoding these novel rhodopsins suggest affiliation to the Actinobacteria, and hence we propose to name these divergent, non-marine rhodopsins ,actinorhodopsins'. Actinorhodopsins conserve the acidic amino acid residues critical for proton pumping and their genes lack genomic association with those encoding photo-sensory transducer proteins, thus supporting a putative ion pumping function. The ratio of recA and radA to rhodopsin genes in the different environment types sampled within the GOS indicates that rhodopsins of one type or another are abundant in microbial communities in freshwater, estuarine and lagoon ecosystems, supporting an important role for these photosystems in all aquatic environments influenced by sunlight. [source]


    Comparing the relative toxicity of malathion and malaoxon in blue catfish Ictalurus furcatus

    ENVIRONMENTAL TOXICOLOGY, Issue 4 2008
    Winfred G. Aker
    Abstract Malathion inhibits the critical body enzyme, acetylcholinesterase (AChE). This capability requires that malathion should first be converted to malaoxon to become an active anticholinesterase agent. Conversion can be caused by oxidation in mammals, insects, plants, and in sunlight. In this study, the effects of malathion and malaoxon on catfish Ictalurus furcatus were evaluated. After 96-h exposures, the LC50 (concentration that causes 50% mortality) and IC50 (concentration that causes 50% enzyme inhibition) for malaoxon were lower than corresponding values for malathion. The overall mean 96-h LC50 is 17.0 ppm for malathion and 3.1 ppm for malaoxon. IC50 values for malathion are 8.5 ppm for brain, 10.3 ppm for liver, and 16.6 ppm for muscle. Corresponding values for malaoxon are 2.3, 3.7, and 6.8 ppm, respectively. All the AChE activities in malathion- and malaoxon-exposed catfish brain showed significant inhibition. The oxidation product malaoxon demonstrated higher inhibition on AChE activity than did malathion. Moreover, malaoxon showed significant inhibition on butyrylcholinesterase (BChE) in the liver if the concentrations were increased to more than 1 ppm. Malathion showed no difference between treatment group and control group. Compared with malathion, malaoxon showed higher inhibition on monoamine activity than that of malathion. The results indicated that the oxidative product malaoxon is more toxic than the parent compound malathion. AChE, BChE, and monoamine activities are confirmed as bioindicators of malathion exposure in blue catfish, I. furcatus. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source]


    Laboratory persistence and fate of fluoxetine in aquatic environments

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2006
    Jeong-Wook Kwon
    Abstract The persistence and fate of fluoxetine, a selective serotonin reuptake inhibitor, has been investigated in laboratory-scale experiments, including studies with various aqueous solutions, water/sediment systems, and activated sludge-amended medium. The samples were placed in the dark and/or in a growth chamber fitted with fluorescent lamps simulating the ultraviolet output of sunlight. Over a period of 30 d, fluoxetine was hydrolytically and photolytically stable in all aqueous solutions except synthetic humic water (pH 7), in which the degradation rate was increased by approximately 13-fold in comparison with buffered solutions at the same pH. Fluoxetine rapidly dissipated from the aqueous phase in water/sediment systems, primarily because of distribution to sediments. The dissipation rate from the aqueous phase was similar between light and dark systems, indicating a low contribution of photodegradation to the dissipation of fluoxetine in this system. The potential impact of fluoxetine in aquatic environments would be decreased because of adsorption to sediments. Based on results of ready-biodegradability investigations, fluoxetine would not be expected to rapidly biodegrade in wastewater treatment plants. A photoproduct was detected only in a sample of synthetic humic water and was identified as norfluoxetine formed by demethylation. Results indicate that fluoxetine is relatively recalcitrant to hydrolysis, photolysis, and microbial degradation and that it is rapidly removed from surface waters by adsorption to sediment, where it appears to be persistent. [source]


    Kinetics of the reduction of chromium(VI) by vitamin C

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2005
    Xiang-Rong Xu
    Abstract The kinetics of the reduction of Cr(VI) to Cr(III) by vitamin C was studied using potassium dichromate solution as the model pollutant. Effects of the concentration of vitamin C, pH, temperature, and irradiation on the reduction of Cr(VI) were examined. The kinetics of Cr(VI) reduction by vitamin C can be described as - d[Cr(VI)]/dt = 0.0156 (,M s,1).[Cr(VI)][vitamin C] (pH 5), where dt is the differential function (d) of time (t). The activation entropy (,S,) and enthalpy (,H,) are 42.4 kJ mol,1 and -71.0 J mol,1 K,1, respectively, and the activation energy at 298 K is 63.5 kJ mol,1. The advantages of vitamin C as a reductant are as follows: It is an important biological reductant in humans and animals, and it is not toxic. Toxic Cr(VI) can be reduced by vitamin C not only in acidic conditions but also in alkaline solutions (pH 9); furthermore, the reduction was shown to occur both under the irradiation and in the dark. The present results suggest that vitamin C could be used effectively in the remediation of Cr(VI)-contaminated soil and groundwater in a wide range of pH, with or without sunlight. [source]


    Influence of salinity on the bioaccumulation and photoinduced toxicity of fluoranthene to an estuarine shrimp and oligochaete

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2003
    John E. Weinstein
    Abstract The effect of salinity on the photoinduced toxicity of waterborne fluoranthene to larvae of the grass shrimp (Palaemonetes pugto) and tubificid oligochaete worms (Monopylephorus rubrontveus) was studied in a laboratory system under simulated sunlight. In the grass shrimp toxicity tests, five concentrations of fluoranthene (0, 3.6, 7.3, 13.8, and 29.0 ,g/L) and four salinities (6.9, 14.5, 21.2, and 28.6,) were achieved. In the oligochaete toxicity tests, five concentrations of fluoranthene (0, 0.8, 1.4, 3.3, and 7.7 ,g/L) and four salinities (7.1, 13.3, 20.5, and 27.6,) were achieved. Salinity had no effect on either the photoinduced toxicity or the bioaccumulation of fluoranthene in the grass shrimp. However, the highest level of salinity decreased the median lethal time for the oligochaete. Bioaccumulation of fluoranthene was inversely related to salinity for the oligochaete. Additional experiments demonstrated an inverse relationship between salinity and short-term osmotic weight change in the oligochaete. Weight of the grass shrimp larvae was not affected by salinity. These findings show that salinity can influence the toxicity and bioaccumulation of fluoranthene in some estuarine organisms. The influence of salinity on these populations may be related to physiological responses associated with internal osmotic volume changes. Thus, salinity needs to be taken into account when assessing the risk of photoactivated polycyclic aromatic hydrocarbon (PAH) to at least some estuarine species. [source]


    Visual Stimuli in Daily Life

    EPILEPSIA, Issue 2004
    Dorothée G. A. Kasteleijn-Nolst Trenité
    Summary: People of all ages, but especially children and adolescents, are increasingly exposed to visual stimuli. Typical environmental stimuli that can trigger epileptic seizures in susceptible persons are televisions (TVs), computers, videogames (VGs), discothèque lights, venetian blinds, striped walls, rolling stairs (escalators), striped clothing, and sunlight reflected from snow or the sea or interrupted by trees during a ride in a car or train. Less common stimuli are rotating helicopter blades, disfunctioning fluorescent lighting, welding lights, etc. New potentially provocative devices turn up now and then unexpectedly. During the last decades especially, displays have become increasingly dominant in many of our daily-life activities. We therefore focus mainly on the characteristics of artificial light and on current and future developments in video displays and videogames. Because VG playing has been shown also to have positive effects, a rating system might be developed for provocativeness to inform consumers about the content. It is important that patients with epilepsy be informed adequately about their possible visual sensitivity. [source]


    THE ENVIRONMENTAL AND GENETIC CONTROL OF SEASONAL POLYPHENISM IN LARVAL COLOR AND ITS ADAPTIVE SIGNIFICANCE IN A SWALLOWTAIL BUTTERFLY

    EVOLUTION, Issue 2 2002
    Wade N. Hazel
    Abstract Seasonal polyphenism, in which different forms of a species are produced at different times of the year, is a common form of phenotypic plasticity among insects. Here I show that the production of dark fifth-instar caterpillars of the eastern black swallowtail butterfly, Papilio polyxenes, is a seasonal polyphenism, with larvae reared on autumnal conditions being significantly darker than larvae reared on midsummer conditions. Both rearing photoperiod and temperature were found to have individual and synergistic effects on larval darkness. Genetic analysis of variation among full-sibling families reared on combinations of two different temperatures and photoperiods is consistent with the hypothesis that variation in darkness is heritable. In addition, the genetic correlation in larval darkness across midsummer and autumnal environments is not different from zero, suggesting that differential gene expression is responsible for the increase in larval darkness in the autumn. The relatively dark autumnal form was found to have a higher body temperature in sunlight than did the lighter midsummer form, and small differences in temperature were found to increase larval growth rate. These results suggest that this genetically based seasonal polyphenism in larval color has evolved in part to increase larval growth rates in the autumn. [source]


    New insights into the mechanisms of polymorphic light eruption: resistance to ultraviolet radiation-induced immune suppression as an aetiological factor

    EXPERIMENTAL DERMATOLOGY, Issue 4 2009
    Peter Wolf
    Abstract:, An abnormal immune response has long been thought responsible for the patho-aetiology of polymorphic light eruption, the most common photodermatosis. Recent evidence indicates that polymorphic light eruption patients are resistant to the immune suppressive effects of sunlight, a phenomenon that leads to the formation of skin lesions upon seasonal sun exposure. This immunological abnormality in polymorphic light eruption supports the concept of the biological significance and evolutionary logic of sunlight-induced immune suppression, i.e. the prevention of immune responses to photo-induced neo-antigens in the skin, thereby preventing autoimmunity and skin rashes. This article focuses on the immunological alterations in polymorphic light eruption and the pathogenic significance to the disease state and skin carcinogenesis. [source]


    Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
    André M. Amado
    Abstract Dissolved organic carbon (DOC) photochemical reactions establish important links between DOC and planktonic bacteria. We hypothesize that seasonal changes in DOC quality, related to the flood pulse, drive the effects of light,DOC interactions on uptake by planktonic bacteria uptake in clear-water Amazonian ecosystems. Water samples from two ecosystems (one lake and one stream) were incubated in sunlight during different hydrological periods and were then exposed to bacterial degradation. Photochemical and bacterial degradation were driven by seasonal DOC inputs. Bacterial mineralization was the main degradation pathway of autochthonous DOC in the lake, while allochthonous DOC was more available for photochemical oxidation. We suggest that sunlight enhances the bacterial uptake of refractory DOC but does not alter uptake of labile forms. We also observed a positive relationship between sunlight and bacterial degradation of DOC, instead of competition. We conclude that photochemical reactions and bacteria complementarily degrade the different sources of DOC during the flood pulse in Amazonian clear-water aquatic ecosystems. [source]


    River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?

    FRESHWATER BIOLOGY, Issue 2010
    MARGARET A. PALMER
    Summary 1. Stream ecosystems are increasingly impacted by multiple stressors that lead to a loss of sensitive species and an overall reduction in diversity. A dominant paradigm in ecological restoration is that increasing habitat heterogeneity (HH) promotes restoration of biodiversity. This paradigm is reflected in stream restoration projects through the common practice of re-configuring channels to add meanders and adding physical structures such as boulders and artificial riffles to restore biodiversity by enhancing structural heterogeneity. 2. To evaluate the validity of this paradigm, we completed an extensive evaluation of published studies that have quantitatively examined the reach-scale response of invertebrate species richness to restoration actions that increased channel complexity/HH. We also evaluated studies that used manipulative or correlative approaches to test for a relationship between physical heterogeneity and invertebrate diversity in streams that were not in need of restoration. 3. We found habitat and macroinvertebrate data for 78 independent stream or river restoration projects described by 18 different author groups in which invertebrate taxa richness data in response to the restoration treatment were available. Most projects were successful in enhancing physical HH; however, only two showed statistically significant increases in biodiversity rendering them more similar to reference reaches or sites. 4. Studies manipulating structural complexity in otherwise healthy streams were generally small in scale and less than half showed a significant positive relationship with invertebrate diversity. Only one-third of the studies that attempted to correlate biodiversity to existing levels of in-stream heterogeneity found a positive relationship. 5. Across all the studies we evaluated, there is no evidence that HH was the primary factor controlling stream invertebrate diversity, particularly in a restoration context. The findings indicate that physical heterogeneity should not be the driving force in selecting restoration approaches for most degraded waterways. Evidence suggests that much more must be done to restore streams impacted by multiple stressors than simply re-configuring channels and enhancing structural complexity with meanders, boulders, wood, or other structures. 6. Thematic implications: as integrators of all activities on the land, streams are sensitive to a host of stressors including impacts from urbanisation, agriculture, deforestation, invasive species, flow regulation, water extractions and mining. The impacts of these individually or in combination typically lead to a decrease in biodiversity because of reduced water quality, biologically unsuitable flow regimes, dispersal barriers, altered inputs of organic matter or sunlight, degraded habitat, etc. Despite the complexity of these stressors, a large number of stream restoration projects focus primarily on physical channel characteristics. We show that this is not a wise investment if ecological recovery is the goal. Managers should critically diagnose the stressors impacting an impaired stream and invest resources first in repairing those problems most likely to limit restoration. [source]


    Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients

    FRESHWATER BIOLOGY, Issue 11 2002
    J. M. Medina-Sánchez
    SUMMARY 1. The response of bacterial production (measured as [3H]TdR incorporation rate) to spectral solar radiation was quantified experimentally in an oligotrophic high-mountain lake over 2 years. Bacterial responses were consistent: ultraviolet-B (UVB) was harmful, whereas ultraviolet-A (UVA) + photosynthetically active radiation (PAR) and PAR enhanced bacterial activity. Full sunlight exerted a net stimulatory effect on bacterial activity in mid-summer but a net inhibitory effect towards the end of the ice-free period. 2. Experiments were undertaken to examine whether the bacterial response pattern depended on the presence of algae and/or was modulated by the availability of a limiting inorganic nutrient (phosphorus, P). In the absence of algae, [3H]TdR incorporation rates were significantly lower than when algae were present under all light treatments, and the consistent bacterial response was lost. This suggests that the bacterial response to spectral solar radiation depends on fresh-C released from algae, which determines the net stimulatory outcome of damage and repair in mid-summer. 3. In the absence of algae, UVB radiation inhibited bacteria when they were strongly P-deficient (mean values of N : P ratio: 46.1), whereas it exerted no direct effect on bacterial activity when they were not P-limited. 4. P-enrichment of lake water markedly altered the response of bacteria to spectral solar radiation at the end of ice-free period, when bacteria were strongly P-deficient. Phosphorus enrichment suppressed the inhibitory effect of full sunlight that was observed in October, both in whole lake water (i.e. including algae) and in the absence of algae. This indicates that the bacterial P-deficiency, measured as the cellular N : P ratio, was partly responsible for the net inhibitory effect of full sunlight, implying a high bacterial vulnerability to UVB. [source]


    Relative importance of microhabitat, plant form and photosynthetic physiology to carbon gain in two alpine herbs

    FUNCTIONAL ECOLOGY, Issue 2 2001
    M. J. Germino
    Abstract 1.,The effects of microhabitat and plant form on sunlight interception, leaf temperatures, frost occurrence and photosynthesis were evaluated for Caltha leptosepala DC and Erythronium grandiflorum Pursh. Both plants are perennials that commonly emerge from alpine snowbanks where the combination of cool temperatures and strong sunlight is among the most extreme for vascular plants. 2., Caltha leptosepala occurred in microsites where colder air accumulates, and has larger, less inclined and more densely clustered leaves compared to E. grandiflorum (which has two steeply inclined leaves). 3.,These differences in microsite and plant form led to leaf temperatures below 0 °C on 70% of nights during the summer growth season in C. leptosepala, compared to only 38% in E. grandiflorum. Leaves of C. leptosepala warmed more slowly on mornings following frosts compared to E. grandiflorum, due to less aerodynamic coupling between leaf and air temperature, and also a 45% smaller ratio of sunlit to total leaf area due to mutual shading among leaves. 4.,As a result, night frost did not affect subsequent CO2 assimilation (A) in E. grandiflorum, while frostless nights and warmer mornings led to 35% greater A in C. leptosepala in the early morning. 5.,There were no appreciable differences in the temperature and light response of photosynthesis between the two species. The apparent quantum yield of A declined only ,8% in both species following frost and exposure to strong sunlight, indicating little adjustment of photosynthetic physiology. 6.,Greater daily carbon gain probably occurs for E. grandiflorum because of its plant form and microclimate, rather than differences in photosynthetic physiology. [source]


    Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2009
    Paul P. C. Verbunt
    Abstract A luminescent solar concentrator (LSC) is a potential low-cost enhancement of the standard large-area silicon photovoltaic panels for the generation of electricity from sunlight. In this work, guest,host systems are investigated using anisotropic fluorescent dyes and liquid crystal mesogens to control the direction of emitted light in the LSC. It is determined that up to 30% more light is emitted from the edge of an LSC waveguide with planar dye alignment parallel to the alignment direction than from any edge of an LSC with no alignment (isotropic). The aligned samples continue to show dichroic performance after additions of both edge mirrors and rear scattering layer. [source]


    Accumulation of DNA damage in Antarctic mosses: correlations with ultraviolet-B radiation, temperature and turf water content vary among species

    GLOBAL CHANGE BIOLOGY, Issue 2 2009
    JOHANNA D. TURNBULL
    Abstract The susceptibility of three East Antarctic moss species to UV-B radiation was examined by measuring accumulation of cyclobutane pyrimidine dimers under natural sunlight during the austral summer season of 2002/03. The 2002/03 season was characterized by unusually low springtime ozone depletion and as such our results likely underestimate the DNA damage possible in a more typical UV-B radiation season. Despite this all three species accumulated significant DNA photoproducts. We also found a positive association between photoproduct accumulation and incident UV-B radiation in the two cosmopolitan species, Bryum pseudotriquetrum and Ceratodon purpureus, with more DNA damage in samples collected early in the season compared with later in the summer. For B. pseudotriquetrum, negative associations were also observed between photoproduct accumulation and both turf water content and the 10-day mean air temperature. Photoproduct accumulation in the endemic species Schistidium antarctici was similarly high across the season and no significant association with environmental variables was found. Our results are consistent with the two cosmopolitan species having somewhat higher UV-B-screening capabilities and possibly more efficient mechanisms for repairing DNA damage than the endemic S. antarctici. [source]


    High Molar Extinction Coefficient Ion-Coordinating Ruthenium Sensitizer for Efficient and Stable Mesoscopic Dye-Sensitized Solar Cells,

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2007
    D. Kuang
    Abstract Ru(4,4-dicarboxylic acid-2,2,-bipyridine) (4,4,-bis(2-(4-(1,4,7,10-tetraoxyundecyl)phenyl)ethenyl)-2,2,-bipyridine) (NCS)2, a new high molar extinction coefficient ion-coordinating ruthenium sensitizer was synthesized and characterized using 1H,NMR, Fourier transform IR (FTIR), and UV/vis spectroscopies and cyclic voltammetry. Using this sensitizer in combination with a nonvolatile organic-solvent-based electrolyte, we obtain a photovoltaic efficiency of 8.4,% under standard global AM,1.5 sunlight. These devices exhibit excellent stability when subjected to continuous thermal stress at 80,°C or light soaking at 60,°C for 1000,h. An electrochemical impedance spectroscopy study revealed that device stability is maintained by stabilizing the TiO2/dye/electrolyte and Pt/electrolyte interface during the aging process. The influence of Li+ present in the electrolyte on the device photovoltaic parameters was studied, and the FTIR spectral and photovoltage transient study showed that Li+ coordinates to the triethyleneoxide methylether side chains on the K60 sensitizer molecules. [source]


    Dye-Sensitized Back-Contact Solar Cells

    ADVANCED MATERIALS, Issue 38 2010
    Dongchuan Fu
    Dye-sensitized back-contact solar cells are fabricated on back plates comprising a patterned FTO glass substrate, a selectively deposited Pt coating, a protective ZrO2 coating covering the Pt layers and a screen printed TiO2 film. Such devices show a solar energy conversion efficiency of 3.64% under AM 1.5 sunlight and a peak incident photon to electron conversion efficiency of 54%. [source]


    Organic Electronics: Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives (Adv. Mater.

    ADVANCED MATERIALS, Issue 8 2010
    8/2010)
    The fabrication of bulk heterojunction organic solar cells from solution-casting techniques using low-cost materials makes them a promising new technology for converting sunlight into electricity. T.-Q. Nguyen, G. C. Bazan, et al. report on p. E63 that undesirable large-scale aggregation and phase separation that may arise during deposition can be reduced by incorporating a small amount of a well-chosen solvent additive. [source]


    Solar power for an Antarctic rover

    HYDROLOGICAL PROCESSES, Issue 4 2006
    J. H. Lever
    Abstract Sensors mounted on mobile robots could serve a variety of science missions in Antarctica. Although weather conditions can be harsh, Antarctic snowfields offer unique conditions to facilitate long-distance robot deployment: the absence of obstacles, firm snow with high albedo, and 24 h sunlight during the summer. We have developed a four-wheel-drive, solar-powered rover that capitalizes on these advantages. Analyses and field measurements confirm that solar power reflected from Antarctic snow contributes 30,40% of the power available to a robot consisting of a five-side box of solar panels. Mobility analyses indicate that the 80 kg rover can move at 0·8 m s,1 during clear sky conditions on firm snow into a 5 m s,1 headwind, twice the speed needed to achieve the design target of 500 km in 2 weeks. Local winter tests of the chassis demonstrated good grade-climbing ability and lower than predicted rolling resistance. Tests of the completed robot occurred in Greenland in 2005. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Preen waxes do not protect carotenoid plumage from bleaching by sunlight

    IBIS, Issue 2 2008
    ADRIAN SURMACKI
    The plumage coloration of wild birds often changes during the breeding season. One of the possible reasons for this is that sunlight, and particularly ultraviolet (UV) wavelengths, degrades the pigments responsible for plumage coloration. It has been suggested that birds may apply preen wax to feathers to protect feathers from bleaching. This hypothesis is tested by exposing carotenoid-based breast feathers of Great Tits to ambient light, light filtered to exclude UV and darkness. Preen waxes were experimentally removed from feather samples and the effect of light on coloration of treatment and control feathers compared. Ambient light had an effect on feather colour but preen wax did not. Feathers exposed to sun gradually became less saturated and hues shifted towards shorter wavelengths. This was not apparent in control feathers kept in darkness. Feathers exposed to full-spectra sunlight faded more than those that were kept in light with UV wavelengths removed. There was a decrease in brightness of feathers in both experimental and control groups, which was assumed to be an effect of dirt accumulation. This experiment confirmed earlier suspicions regarding the detrimental effects of UV irradiation on carotenoid-based coloration of avian feathers but failed to show any protective function of preen waxes. The possible consequences of these mechanisms of colour change for birds with regard to mating strategies are discussed. [source]


    Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells

    ADVANCED MATERIALS, Issue 21 2009
    Dehong Chen
    Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes are prepared by using a combined sol,gel and solvothermal process. Dye-sensitized solar cells made from these mesoporous beads gave a total power conversion efficiency of 7.20% under AM 1.5 sunlight, higher than that obtained using Degussa P25 films of similar thickness (5.66%). [source]


    Solar-thermochromism of Pseudocrystalline Nanodroplets of Ionic Liquid,NiII Complexes Immobilized inside Translucent Microporous PVDF Films

    ADVANCED MATERIALS, Issue 7 2009
    Xianjun Wei
    Translucent composite films of poly(vinylidene fluoride), ionic liquid, and nickel complexes are successfully fabricated using thermal modulation of dissolution, casting, and drying. These films exhibit high stability in ambient storage and reversible thermochromic responses in air at temperatures achievable under sunlight, promising intelligent windows for controlling solar heat entering the built environment. [source]