Home About us Contact | |||
Sulphydryl Groups (sulphydryl + groups)
Selected AbstractsElective coronary angioplasty with 60 s balloon inflation does not cause peroxidative injuryEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2002K. Cedro Abstract Background The aim of this study was to evaluate the ongoing controversial issue of whether ischemia/reperfusion during elective coronary angioplasty evokes myocardial peroxidative injury. Design We measured indicators of free radical damage to lipids (free malondialdehyde) and proteins (sulphydryl groups) in coronary sinus blood in 19 patients with stable angina who were undergoing elective angioplasty for isolated stenosis of the proximal left anterior descending coronary artery. Ischemia induced by 60 s balloon inflations was confirmed by lactate washout into coronary sinus after deflation, with immediate and 1 min samples. Peroxidative injury was assessed from washout of (a) malondialdehyde measured directly by high performance liquid chromatography and (b) reduced sulphydryl groups, inverse marker of protein oxidative stress. Results Mean lactate concentration immediately after each deflation increased by 120,150% of the initial value, confirming ischemia and showing that blood originated largely from the ischemic region. Lack of myocardial production of malondialdehyde was confirmed by (a) no arteriovenous differences in individual basal concentrations (aortic, range 0·33,12·03 nmol mL,1, mean 7·82; coronary sinus blood, range 0·52,15·82 nmol mL,1, mean 8·18), and (b) after deflations, mean concentrations were not significantly different from preocclusion value. There was no decrease in concentration of sulphydryl groups throughout angioplasty. Conclusion Elective coronary angioplasty with 60 s balloon inflations is a safe procedure that does not induce peroxidative myocardial injury as assessed by methods used in the present study. [source] Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatoninJOURNAL OF PINEAL RESEARCH, Issue 2 2009Eloisa Gitto Abstract:, Newborns, and especially those delivered preterm, are probably more prone to oxidative stress than individuals later in life. Also during pregnancy, increased oxygen demand augments the rate of production of reactive oxygen species (ROS) and women, even with normal pregnancies, experience elevated oxidative stress and lipid peroxidation compared with nonpregnant women. Also, there appears to be an increase in ROS generation in the placenta of pre-eclamptic women. In comparison with healthy adults, newborn infants have lower levels of plasma antioxidants such as vitamin E, ,-carotene, and sulphydryl groups, lower levels of plasma metal binding proteins including ceruloplasmin and transferrin, and reduced activity of erythrocyte superoxide dismutase. This review summarizes conditions of newborns where there is elevated oxidative stress. Included in this group of conditions is asphyxia, respiratory distress syndrome and sepsis and the review also summarizes the literature related to clinical trials of antioxidant therapies and of melatonin, a highly effective antioxidant and free radical scavenger. The authors document there is general agreement that short-term melatonin therapy may be highly effective and that it has a remarkably benign safety profile, even when neonates are treated with pharmacological doses. Significant complications with long-term melatonin therapy in children and adults also have not been reported. None of the animal studies of maternal melatonin treatment or in postnatal life have shown any treatment-related side effects. The authors conclude that treatment with melatonin might result in a wide range of health benefits, improved quality of life and reduced healthcare costs and may help reduce complications in the neonatal period. [source] Identification of the membrane penetrating domain of Vibrio cholerae cytolysin as a ,-barrel structureMOLECULAR MICROBIOLOGY, Issue 1 2005Angela Valeva Summary Vibrio cholerae cytolysin (VCC) is an oligomerizing pore-forming toxin that is related to cytolysins of many other Gram-negative organisms. VCC contains six cysteine residues, of which two were found to be present in free sulphydryl form. The positions of two intramolecular disulphide bonds were mapped, and one was shown to be essential for correct folding of protoxin. Mutations were created in which the two free cysteines were deleted, so that single cysteine substitution mutants could be generated for site-specific labelling. Employment of polarity-sensitive fluorophores identified amino acid side-chains that formed part of the pore-forming domain of VCC. The sequence commenced at residue 311, and was deduced to form a ,-barrel in the assembled oligomer with the subsequent odd-numbered residues facing the lipid bilayer and even-numbered residues facing the lumen. Pro328/Lys329 were tentatively identified as the position at which the sequence turns back into the membrane and where the antiparallel ,-strand commences. This was deduced from fluorimetric analyses combined with experiments in which the pore was reversibly occluded by derivatization of sulphydryl groups with a bulky moiety. Our data support computer-based predictions that the membrane-permeabilizing amino acid sequence of VCC is homologous to the ,-barrel-forming sequence of staphylococcal cytolysins and identify the ,-barrel as a membrane-perforating structure that is highly conserved in evolution. [source] Separation and quantification of the cellular thiol pool of pea plants treated with heat, salt and atrazinePHYTOCHEMICAL ANALYSIS, Issue 4 2007Sergei Veselinov Ivanov Abstract A novel procedure for the separation of the cellular thiol pool according to the molecular weight and localization of compounds with sulphydryl groups is presented. This simple and rapid method allows the differentiation of thiols into three major fractions,low molecular weight (LMT, primarily glutathione and free cysteine), protein-bound (TPT) and pellet-bound (PBT, associated with cell walls and broken organelles). Moreover, determination of the ratio between surface (readily reactive) thiols (ATG) and those that are more or less buried in the protein structure (BTG) can be achieved. In intact pea leaves, the amounts of the total thiols (LMT + PBT + TPT) varies from 2.5 to 4.8 µmol/g of fresh material. The data for LMT, PBT and TPT were related to each other in the approximate ratio 1:2:7. Treatments of pea plants with high temperature, salinity and low amounts of atrazine affect these sulphydryl types differently. For a greater understanding of the applicability of this method to physiological research, the main mechanisms leading to alterations in the cellular thiol pool are discussed. Furthermore, it is suggested that the proportion of available to buried thiols (ATG/BTG) in proteins could be used as a convenient marker for stress impacts. Copyright © 2007 John Wiley & Sons, Ltd. [source] Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insultPHYTOTHERAPY RESEARCH, Issue S1 2010Kanti Bhooshan Pandey Abstract Resveratrol is a natural polyphenolic compound found largely in the skin of red grapes. Growing evidence suggests that resveratrol may play an important role in the prevention of many human diseases. Many of the biological actions of this polyphenol have been attributed to its antioxidant properties. The present study was undertaken to evaluate the effect of resveratrol on intracellular reduced glutathione (GSH) and membrane sulphydryl groups in erythrocytes subjected to oxidative stress in vitro by incubating with t-BHP (10 µm). The study was aimed to test the efficacy of the antioxidant effect of resveratrol on human erythrocytes. Subjecting erythrocytes to oxidative stress (in vitro) by incubating them with t-BHP (10 µm) caused a significant decrease in the intracellular GSH level and membrane ,SH content compared with basal values. Incubation of erythrocytes/membranes with resveratrol (1,100 µm final conc) resulted in significant protection against the t-BHP-induced oxidative stress as evidenced by the increase in GSH level and membrane ,SH content. It was observed that the effect of resveratrol is dose/concentration and time-dependent. Since resveratrol is naturally present in many fruits and vegetables, a diet rich in resveratrol may provide protection against degenerative diseases. Copyright © 2009 John Wiley & Sons, Ltd. [source] |