Sulfur-containing Compounds (sulfur-containing + compound)

Distribution by Scientific Domains


Selected Abstracts


S -Allyl- L -Cysteine Sulfoxide Inhibits Tumor Necrosis Factor-Alpha Induced Monocyte Adhesion and Intercellular Cell Adhesion Molecule-1 Expression in Human Umbilical Vein Endothelial Cells

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2010
Chai Hui
Abstract Garlic and its water-soluble allyl sulfur-containing compound, S -Allyl- L -cysteine Sulfoxide (ACSO), have shown antioxidant and anti-inflammatory activities, inhibiting the development of atherosclerosis. However, little is known about the mechanism(s) underlying the therapeutic effect of ACSO in inhibiting the formation of atherosclerostic lesion. This study aimed to investigate whether ACSO could modulate tumor necrosis factor-alpha (TNF-,)-induced expression of intercellular cell adhesion molecule-1, monocyte adhesion and TNF-,-mediated signaling in human umbilical vein endothelial cells. While TNF-, promoted the intercellular cell adhesion molecule-1 mRNA transcription in a dose- and time-dependent manner, ACSO treatment significantly reduced the levels of TNF-,-induced intercellular cell adhesion molecule-1 mRNA transcripts (P < 0.01). Furthermore, ACSO dramatically inhibited TNF-, triggered adhesion of THP-1 monocytes to endothelial cells and porcine coronary artery rings. Moreover, ACSO mitigated TNF-, induced depolarization of mitochondrial membrane potential and overproduction of superoxide anion, associated with the inhibition of NOX4, a subunit of nicotinamide adenine dinucleotide phosphate-oxidase, mRNA transcription. In addition, ACSO also inhibited TNF-,-induced phosphorylation of JNK, ERK1/2 and I,B, but not p38. Apparently, ACSO inhibited proinflammatory cytokine-induced adhesion of monocytes to endothelial cells by inhibiting the mitogen-activated protein kinase signaling and related intercellular cell adhesion molecule-1 expression, maintaining mitochondrial membrane potential, and suppressing the overproduction of superoxide anion in endothelial cells. Therefore, our findings may provide new insights into ACSO on controlling TNF-,-mediated inflammation and vascular disease. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source]


Oxidative processes of desulfurization of liquid fuels

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2010
J.M. Campos-Martin
Abstract Environmental concerns have introduced a need to remove sulfur-containing compounds from light oil. As oxidative desulfurization is conducted under very mild reaction conditions, much attention has recently been devoted to this process. In this contribution, the developments in selective removal of organosulfur compounds present in liquid fuels via oxidative desulfurization, including both chemical oxidation and biodesulfurization, are reviewed. At the end of each section, a brief account of the research directions needed in this field is also included. Copyright © 2010 Society of Chemical Industry [source]


Effect of Storage Time on Raw Sardine (Sardina pilchardus) Flavor and Aroma Quality

JOURNAL OF FOOD SCIENCE, Issue 5 2004
C. Prost
ABSTRACT: Qualitative and semi-relative quantitative changes in flavor profiles associated with the storage of raw sardine (Sardina pilchardus) were investigated. A sensory panel generated a list of 20 odorant descriptors of raw sardine. Forty-seven volatile components were identified by gas chromatography-mass spectrometry and were quantified by gas chromatography-flame ionization detector (GC-FID). Among them, 34 were highlighted as potent odorants using an olfactometric method. (E,E)-2,4-octadienal, E-2-penten-1-ol and 2,3-butanedione are the most potent odorants of raw sardine. The odor-active compounds responsible for oxidized flavors increased during storage, whereas sulfur-containing compounds associated with marine odors decreased. These results could be related to the increase in rancidity aroma and the decrease in marine/iodized aroma identified by the sensory panelists in stored raw fish. [source]


Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2010
Juliana D'Andrilli
We compare the ultrahigh resolution 9.4,T Fourier transform ion cyclotron resonance (FT-ICR) mass spectra of marine dissolved organic matter (DOM) isolated from two sites in the Weddell Sea (Antarctica) obtained by complementary electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Ions produced by APPI extend to higher carbon unsaturation than those produced by ESI, indicated by higher double-bond equivalents (rings plus double bonds) minus oxygen (DBE-O) values, whereas ESI-generated ions are more oxygenated. Moreover, many sulfur-containing compounds were efficiently ionized by ESI but not detected by APPI. Because the mass spectra obtained by ESI and APPI are significantly different, both are necessary to obtain a more complete description of the molecular composition of marine DOM. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Fragmentation pathways of some benzothiophene radical cations formed by atmospheric pressure chemical ionisation

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2009
Lisandra Cubero Herrera
Polycyclic aromatic sulfur-containing compounds (PASHs) are commonly found in fossil fuels and are of considerable importance in environmental studies. This work presents detailed studies on the fragmentation patterns of radical cations formed from four representative PASHs, benzo[b]thiophene, dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, using tandem atmospheric pressure chemical ionization mass spectrometry (APCI-MS/MS). Understanding these fragmentation patterns can be a useful aid in the analysis of PASHs employing APCI or electron ionization (EI-MS/MS), either alone or in conjunction with liquid or gas chromatography. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Antioxidative activity of sulfur-containing compounds in Allium species for human LDL oxidation in vitro

BIOFACTORS, Issue 1-4 2004
Hiroyuki Nishimura
Abstract Sulfur-containing compounds contributing to health promotion in Allium species are produced via enzymic and thermochemical reactions. Sulfur-containing amino acids and volatile organosulfur compounds were prepared for an antioxidative assay. The inhibitory activity of S-alk(en)yl-L-cysteines and their sulfoxides, volatile alk(en)yl disulfides and trisulfides, and vinyldithiins in Allium species against lipid hydroperoxide (LOOH) formation in human low-density lipoprotein (LDL) was examined. It was elucidated that the alk(en)yl substituents (methyl, propyl, and allyl) and the number of sulfur atoms in the compounds were important for the antioxidative activity. 3,4-Dihydro-3-vinyl-1,2-dithiin, which is produced by a thermochemical reaction of allyl 2-propenethiosulfinate, exhibited the highest antioxidative activity of human LDL among sulfur-containing compounds. [source]


Adsorptive Desulfurization and Denitrogenation of Refinery Fuels Using Mesoporous Silica Adsorbents

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 4 2008
Jun-Mi Kwon
Adsorbed in what it's doing: Well-designed mesoporous silica adsorbents (see scheme) can contribute to the production of clean fuels through preferential adsorption of nitrogen- and sulfur-containing compounds from light gas oil and heavy catalytic naphtha in refinery streams. The adsorbent with Zr ions shows a higher adsorption capacity and affinity for sulfur compounds than its non-zirconia-containing counterpart. [source]