Home About us Contact | |||
Sulfone Linkages (sulfone + linkage)
Selected AbstractsSynthesis and properties of novel organosoluble aromatic poly(ether ketone)s containing pendant methyl groups and sulfone linkagesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Shou-Ri Sheng Abstract Several novel aromatic poly(ether ketone)s containing pendant methyl groups and sulfone linkages with inherent viscosities of 0.62,0.65 dL/g were prepared from 2-methyldiphenylether and 3-methyldiphenylether with 4,4,-bis(4-chloroformylphenoxy)diphenylsulfone and 4,4,-bis (3-chloroformylphenoxy)diphenylsulfone by electrophilic Friedel,Crafts acylation in the presence of N,N -dimethylformamide with anhydrous AlCl3 as a catalyst in 1,2-dichloroethane. These polymers, having weight-average molecular weights in the range of 57,000,71,000, were all amorphous and showed high glass-transition temperatures ranging from 160.5 to 167°C, excellent thermal stability at temperatures over 450°C in air or nitrogen, high char yields of 52,57% in nitrogen, and good solubility in CHCl3 and polar solvents such as N,N -dimethylformamide, dimethyl sulfoxide, and N -methyl-2-pyrrolidone at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 84.6,90.4 MPa, Young's moduli of 2.33,2.71 GPa, and elongations at break of 26.1,27.4%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells.JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2004Abstract A novel sulfonated diamine, 3,3,-disulfonic acid-bis[4-(3-aminophenoxy)phenyl]sulfone (SA-DADPS), was prepared from m -aminophenol and disodium-3,3,-disulfonate-4,4,-dichlorodiphenylsulfone. The conditions necessary to synthesize and purify SA-DADPS in high yields were investigated in some detail. This disulfonated aromatic diamine, containing ether and sulfone linkages, was used to prepare N -methyl-2-pyrrolidinone-soluble, six-membered ring polyimide copolymers containing pendent sulfonic acid groups by a catalyzed one-step high-temperature polycondensation in m -cresol. These materials showed much improved hydrolytic stability with respect to phthalimides. High-molecular-weight film-forming statistical copolymers with controlled degrees of disulfonation were prepared through variations in the stoichiometric ratio of disulfonated diamine (SA-DADPS) in its soluble triethylamine salt form to several unsulfonated diamines. Three unsulfonated diamines, bis[4-(3-aminophenoxy)phenyl] sulfone, 4,4,-oxydianiline, and 1,3-phenylenediamine, were used to prepare the copolymers. The characterization of the copolymers by 1H NMR, Fourier transform infrared, ion-exchange capacity, and thermogravimetric analysis demonstrated that SA-DADPS was quantitatively incorporated into the copolymers. Solution-cast films of the sulfonated copolymers were prepared and afforded tough, ductile membranes with high glass-transition temperatures. Methods were developed to acidify the triethylammonium salt membranes into their disulfonic acid form, this being necessary for proton conduction in a fuel cell. The synthesis and characterization of these materials are described in this article. Future articles will describe the performance of these copolymers as proton-exchange membranes in hydrogen/air and direct methanol fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 862,874, 2004 [source] Aromatic polybenzoxazoles containing ether,sulfone linkagesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2001Sheng-Huei Hsiao Abstract A series of poly(o -hydroxy amide)s having both ether and sulfone linkages in the main chain were synthesized via the low-temperature solution polycondensation of 4,4,-[sulfonylbis(1,4-phenylene)dioxy]dibenzoyl chloride and 4,4,-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]dibenzoyl chloride with three bis(o -aminophenol)s including 4,4,-diamino-3,3,-dihydroxybiphenyl, 3,3,-diamino-4,4,-dihydroxybiphenyl, and 2,2-bis(3-diamino-4-hydroxyphenyl)hexafluoropropane. Subsequent thermal cyclodehydration of the poly(o -hydroxy amide)s afforded polyethersulfone benzoxazoles. Most of the poly(o -hydroxy amide)s were soluble in polar organic solvents such as N -methyl-2-pyrrolidone; however, the polybenzoxazoles without the hexafluoroisopropylidene group were organic-insoluble. The polybenzoxazoles exhibited glass-transition temperatures (Tg) in the range of 219,282 °C by DSC and softening temperatures (Ts) of 242,320 °C by thermomechanical analysis. Thermogravimetric analyses indicated that most polybenzoxazoles were stable up to 450 °C in air or nitrogen. The 10% weight loss temperatures were recorded in the ranges of 474,593 °C in air and 478,643 °C in nitrogen. The methyl-substituted polybenzoxazoles had higher Tg's but lower Ts's and initial decomposition temperatures compared with the corresponding unsubstituted polybenzoxazoles. For a comparative purpose, the synthesis and characterization of a series of sulfonyl polybenzoxazoles without the ether group that derived from 4,4,-sulfonyldibenzoyl chloride and bis(o -aminophenol)s were also reported. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2262,2270, 2001 [source] |