Sulfobutyl Ether (sulfobutyl + ether)

Distribution by Scientific Domains


Selected Abstracts


Sulfobutyl Ether-,-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2005
Philippe Blach
Abstract The potentialities of sulfobutyl ether-,-CDs derivatives as supramolecular carrier in a biphasic Tsuji,Trost reaction catalyzed by a water-soluble palladium complex of trisulfonated triphenylphosphine have been investigated. The efficiency of these cyclodextrins (CDs) strongly depends on the average molar substitution degree of cyclodextrin and the highest rate enhancements were obtained with cyclodextrins containing about 7 sulfobutyl ether groups. This result was attributed to the absence of a strong interaction between this cyclodextrin and the trisulfonated triphenylphosphine used to dissolve the catalyst in the aqueous phase and to the presence of an extended hydrophobic cavity allowing a better molecular recognition between the substrate and the cyclodextrin. This constitutes the first example of a non-interacting ,-cyclodextrin/phosphine couple with high catalytic activities. [source]


Determination of enantiomeric purity of a novel COX-2 anti-inflammatory drug by capillary electrophoresis using single and dual cyclodextrin systems

ELECTROPHORESIS, Issue 9 2003
Carlos Pérez-Maseda
Abstract E-6087 is the most advanced compound among the cyclooxygenase-2 (COX-2) inhibitor drugs developed in our company. Its activity is mainly associated with the S(,)-enantiomer (E-6232), whereas the R(,)-enantiomer (E-6231) becomes an impurity whose content should be determined. Five main impurities and degradation products of E-6232 have been found (E-6144, E-6024, E-6072, E-6397 and E-6132), and some of them co-elute with the distomer when using a chiral high-performance liquid chromatography (HPLC) method. Consequently, we have optimized the separation of all the impurities from the two enantiomers of E-6087 by capillary electrophoresis (CE), in order to use the method for the enantiomeric purity determination of E-6232. The effect of the methanol (MeOH) content in the background electrolyte (BGE), the sulfobutyl ether-,-cyclodextrin (SBE-,-CD) and heptakis-(2,6-di- O -methyl)-,-cyclodextrin (DM-,-CD) concentration, and the capillary temperature have been studied. Separation of all compounds could be achieved in different systems, either in a single CD-system (with SBE-,-CD) or in a dual CD-system (with DM-,-CD as a neutral CD). By using the dual CD system a limit of detection (LOD) and a limit of quantitation (LOQ) of 0.03% and 0.1% of distomer, respectively, were achieved*. [source]


Sulfobutyl Ether-,-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2005
Philippe Blach
Abstract The potentialities of sulfobutyl ether-,-CDs derivatives as supramolecular carrier in a biphasic Tsuji,Trost reaction catalyzed by a water-soluble palladium complex of trisulfonated triphenylphosphine have been investigated. The efficiency of these cyclodextrins (CDs) strongly depends on the average molar substitution degree of cyclodextrin and the highest rate enhancements were obtained with cyclodextrins containing about 7 sulfobutyl ether groups. This result was attributed to the absence of a strong interaction between this cyclodextrin and the trisulfonated triphenylphosphine used to dissolve the catalyst in the aqueous phase and to the presence of an extended hydrophobic cavity allowing a better molecular recognition between the substrate and the cyclodextrin. This constitutes the first example of a non-interacting ,-cyclodextrin/phosphine couple with high catalytic activities. [source]


Inhibitory effect of sulfobutyl ether ,-cyclodextrin on DY-9760e-induced cellular damage: In vitro and in vivo studies

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2003
Yukihiko Nagase
Abstract The effects of water-soluble ,-cyclodextrin derivatives (,-CyDs), such as 2-hydroxypropyl-,-cyclodextrin (HP-,-CyD) and sulfobutyl ether ,-cyclodextrin (SBE7-,-CyD) on cytotoxicity of DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H -indazole dihydrochloride 3.5 hydrate) toward human umbilical vein endothelial cells (HUVECs) in vitro and vascular damage of the auricular vein of rabbits by DY-9760e in vivo were investigated. The spectroscopic study revealed that of the four ,-CyDs SBE7-,-CyD forms the most stable inclusion complex in phosphate-buffered saline, probably because of a synergetic effect of hydrophobic and electrostatic interactions. ,-CyDs inhibited DY-9760e-induced cell death toward HUVECs in an order of G2 -,-CyD,<,,-CyD,<,HP-,-CyD,<,SBE7-,-CyD, which was consistent with the order of the magnitude of stability constants. When the DY-9760e solution was infused into the auricular vein of rabbits for 24 h, SBE7-,-CyD suppressed a DY-9760e-induced irritation such as thrombus, desquamation of the endothelium vasculitis, and perivasculitis. The present data indicated that SBE7-,-CyD formed an inclusion complex with DY-9760e in a buffer solution and possessed the protective effect on DY-9760e-induced cytotoxicity toward HUVECs and vascular damage in rabbits. These results suggested potential use of SBE7-,-CyD as a parenteral carrier for DY-9760e. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2466,2474, 2003 [source]


Separation of diastereomers of flavanone-7- O -glycosides by capillary electrophoresis using sulfobutyl ether-,-cyclodextrin as the selector

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 9-10 2003
Zeineb Aturki
Abstract A method was developed for the separation of diastereomers of flavanone-7- O -glycosides by capillary electrophoresis using sulfobutyl ether-,-cyclodextrin (SBE-,-CD) in the background electrolyte. The effect of the concentration of the CD additive, buffer pH, and organic modifier on the migration times and resolution for five flavanone glycosides (naringin, hesperidin, neohesperidin, narirutin, and eriocitrin) was studied. Baseline separations of these compounds as pairs of diastereoisomers were achieved with 20 mM tetraborate buffer at pH 7 containing 5 mg/mL of SBE-,-CD and 10% (v/v) of methanol. The developed method was used for the qualitative analysis of the diastereomeric composition of the major flavanone glycosides in different citrus juices. The ability of SBE-,-CD to discriminate flavanone enantiomers was also investigated. [source]