Home About us Contact | |||
Sulfanilic Acid (sulfanilic + acid)
Selected AbstractsSulfanilic Acid: A Novel Consolidation Agent for Al2O3 in Aqueous MediaJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2006Jingxian Zhang A new solidifying agent, 4-aminobenzene sulfonic acid (sulfanilic acid), is reported in this paper. The consolidation process and mechanism were followed using on viscoelastic, FTIR, SEM, and Hg porosimetry measurements. It was shown that the Al2O3 slurries with PAA-Na as dispersant exhibited a high degree of particle stabilization. After the addition of sulfanilic acid, we observed an exponential increase in the storage modulus (G,) as a function of consolidation time. Correspondingly, Al2O3 slurries exhibited a transition from a viscous to an elastic state (in 62 min). FTIR analysis indicated that the consolidation process might follow two steps: first, the adsorption of sulfanilic acid on the Al2O3 particle surface; second, the acid,base interaction between the adsorbed PAA-Na molecules and the sulfanilic acid molecules. This interaction could possibly induce the formation of three-dimensional networks through a bridging or charge neutralization mechanism. The as-consolidated Al2O3 green samples were homogeneous, with the relative green density being 54.69%. Results showed that it was feasible to introduce sulfanilic acid for the consolidation of Al2O3 slurries in aqueous media. [source] Skin sensitization, false positives and false negatives: experience with guinea pig assaysJOURNAL OF APPLIED TOXICOLOGY, Issue 5 2010David A. Basketter Abstract The advent of the local lymph node assay (LLNA), and efforts to develop in vitro alternatives for the identification of skin sensitizing chemicals has focused attention on the issue of false positive and false negative results. In essence, the question becomes ,what is the gold standard?' In this context, attention has focused primarily on the LLNA as this is now the preferred assay for skin sensitization testing. However, for many years prior to introduction of the LLNA, the guinea pig maximization test and the occluded patch test of Buehler were the methods of choice. In order to encourage a more informed dialogue about the relative performance, accuracy and applicability of the LLNA and guinea pig tests, we have here considered the extent to which guinea pig methods were themselves subject to false positives and negative results. We describe and discuss here well-characterized examples of instances where both false negatives (including abietic acid and eugenol) or false positives (including vanillin and sulfanilic acid) have been recorded in guinea pig tests. These and other examples are discussed with particular reference to the fabrication of a gold standard dataset that is required for the validation of in vitro alternatives. Copyright © 2010 John Wiley & Sons, Ltd. [source] Sulfanilic Acid: A Novel Consolidation Agent for Al2O3 in Aqueous MediaJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2006Jingxian Zhang A new solidifying agent, 4-aminobenzene sulfonic acid (sulfanilic acid), is reported in this paper. The consolidation process and mechanism were followed using on viscoelastic, FTIR, SEM, and Hg porosimetry measurements. It was shown that the Al2O3 slurries with PAA-Na as dispersant exhibited a high degree of particle stabilization. After the addition of sulfanilic acid, we observed an exponential increase in the storage modulus (G,) as a function of consolidation time. Correspondingly, Al2O3 slurries exhibited a transition from a viscous to an elastic state (in 62 min). FTIR analysis indicated that the consolidation process might follow two steps: first, the adsorption of sulfanilic acid on the Al2O3 particle surface; second, the acid,base interaction between the adsorbed PAA-Na molecules and the sulfanilic acid molecules. This interaction could possibly induce the formation of three-dimensional networks through a bridging or charge neutralization mechanism. The as-consolidated Al2O3 green samples were homogeneous, with the relative green density being 54.69%. Results showed that it was feasible to introduce sulfanilic acid for the consolidation of Al2O3 slurries in aqueous media. [source] Binding and Sulfonation of Poly(acrylic acid) on Iron Oxide Nanoparticles: a Novel, Magnetic, Strong Acid Cation Nano-AdsorbentMACROMOLECULAR RAPID COMMUNICATIONS, Issue 19 2005Sou-Yee Mak Abstract Summary: A novel, magnetic, strong acid cation nano-adsorbent has been developed by the covalent binding of poly(acrylic acid) on the surface of Fe3O4 nanoparticles followed by sulfonation using sulfanilic acid via carbodiimide activation. The nano-absorbent can be easily recovered or manipulated with an external magnetic field and shows a good capacity for the rapid and efficient adsorption of multivalent metal cations from aqueous solutions. An illustration for the binding and sulfonation of PAA on Fe3O4 nanoparticles to produce a magnetic, strong acid cation nano-adsorbent. [source] |