Suitable Monomers (suitable + monomer)

Distribution by Scientific Domains


Selected Abstracts


Photolithographic Patterning of Ring-Opening Metathesis Catalysts on Silicon,

ADVANCED MATERIALS, Issue 1 2005
F. Harris
Ruthenium-based metathesis catalysts have been successfully covalently bound to a thermal oxide layer on a Si(100) wafer. Selective inactivation of the catalyst is achieved via exposure to UV light using standard photolithographic techniques. Subsequent exposure of the wafer to a suitable monomer results in the formation of a patterned polymeric film that is covalently attached to the oxide layer (see Figure). [source]


Synthesis and Characterisation of a New Cu(O2CNAllyl2)2 Carbamato Complex and an Unusual Polymeric CuI Complex [CuI4Cl4(NHAllyl2)4]n: New Insights into Metal Carbamato Chemistry

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 35 2009
Alberto Albinati
Abstract Transition-metal N,N -dialkylcarbamato complexes represent an interesting class of compounds that can be conveniently used as precursors for the controlled formation of inorganic compounds, typically oxides. They can also be used as convenient precursors for chemical grafting of metal oxides on oxide surfaces as well as for the synthesis of inorganic,organic hybrid materials. In this last case, the presence of double bonds on the complex would enable its covalent embedding into a polymer matrix through reaction with suitable monomers. To this aim, we addressed the synthesis of an allyl-functionalised copper carbamato complex. During the synthesis of the N,N -diallylcarbamato complex Cu(O2CNAllyl2)2 (Cu1), the formation of the crystalline and unusual polymeric CuI complex [CuI4Cl4(NHAllyl2)4]n (Cu2) was observed. The new compound was characterised by X-ray single crystal diffraction and FTIR, 1H and 13C NMR spectroscopic analysis. In an attempt to investigate the redox mechanism and the equilibria leading to the formation of the observed unusual CuI polymeric complex, gas chromatography coupled with mass spectrometry (GC,MS) experiments were carried out, which allowed us to identify 3,4-dimethylpyrrole as the oxidation product of the reaction, leading to the reduction of CuII to CuI.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Synthesis of Reactive Polymeric Dyes as Textile Auxiliaries

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 9 2003
Angelina Altomare
Abstract New polymeric materials containing amino-substituted azobenzene chromophores and reactive functional groups and characterized by some hydrophilicity were prepared with the aim of investigating alternative textile dyeing routes. The indicated materials were obtained either by copolymerization of suitable monomers or by modification of preformed polymers. In both cases commercial 4-amino-2,,3-dimethylazobenzene (FG) was used as chromogenic compound. According to the first synthetic strategy, the methacrylamido derivative of FG was copolymerized by free radical initiation with different monomers, such as methyl methacrylate, glycidyl methacrylate, N - tert -butylacrylamide, methacrylic acid, N -vinyl-2-pyrrolidinone, and vinyl acetate. Reaction of FG with preformed polymers containing epoxy groups generally afforded crosslinked materials. On the other hand, low FG loading extents were recorded by amidation of polymers containing carboxylic groups. Indeed, almost quantitative conversions were obtained only in the reaction of FG with anhydride containing polymers. The chemical structure, molecular weight properties, and the physical-chemical characteristics of all synthesized polymeric dyes were thoroughly investigated. Some very preliminary dyeing tests of different cloth types with the prepared polymeric dyes were also performed. UV absorption spectrum of poly(FGMAA) and poly(FGMAA- co -MMA) in chloroform at 25,°C (FGMAA,=,4-methacrylamido-2,,3-dimethylazobenzene). [source]


Reactive extrusion of recycled bottle waste material

POLYMER ENGINEERING & SCIENCE, Issue 4 2002
R. Hettema
The objective of this study is to investigate the effect of reactive processing of commingled bottle waste polymer in an extruder. A variety of peroxides and monomers were tested to assess their influence on the final mechanical properties of the product. The reactive extruded polymer blends were prepared in two types of extruders: a co-rotating twin-screw extruder and a Buss co-Kneader single-screw extruder. Blends were analyzed for mechanical and thermal properties. The effectiveness of the different monomers and peroxides was evaluated in terms of improvement in impact properties. It has been found that the toughness of the polymer blend is improved by reactive processing. Depending on the amount and type of reactants, the impact strength can be improved by 220%, with a slight reduction in the modulus compared to an unmodified physical blend. The most suitable monomers were n-butylmethacrylate (BMA), t-butylamino ethylmethacrylate (TBAEMA) and a combination of styrene/maleic anhydride (ST/MAH). The peroxide should have a short half-lifetime compared to the average residence time in the extruder. The most effective monomers have a high initial reactivity and low rate of evaporation at the processing conditions used. Changes in processing conditions in the extruder influence the reaction conditions and therefore the final properties of the blend. Results were interpreted in terms of residence time, melting profile and peroxide concentration. [source]