Study Watersheds (study + watershed)

Distribution by Scientific Domains


Selected Abstracts


COMPARISON OF HSPF OUTPUTS USING FTABLES GENERATED WITH FIELD SURVEY AND DIGITAL DATA,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2006
Nathan Staley
ABSTRACT: The Hydrological Simulation Program-FORTRAN (HSPF) describes discharge from a stream reach based on function tables (FTABLES) that relate stream stage, surface area, volume, and discharge. For this study, five FTABLE scenarios were compared to assess their effect on daily discharge rates predicted using HSPF. Four "field-based" FTABLE scenarios were developed using detailed cross section surveys collected at predefined intervals along 14 reaches in the study watershed. A fifth "digital-based" scenario was developed using digital elevation models (DEMs) and Natural Resource Conservation Service (NRCS) Regional Hydraulic Geometry Curves. The Smirnov k-sample test was used to compare average daily discharge rates simulated with HSPF using the five FTABLE scenarios. No significant difference in simulated stream discharge was found (p = 0.99) between the five FTABLE scenarios. Additional examination of the four field-based scenarios revealed that the number of cross sections per stream reach used to generate FTABLES had little effect on the resulting stage discharge relationship. These findings suggest that FTABLES generated using digital data are a viable option when simulating stream discharge with HSPF and that if field data are used to generate FTABLES, using fewer cross sections will not adversely affect simulated discharge predictions. [source]


MASS LOAD ESTIMATION ERRORS UTILIZING GRAB SAMPLING STRATEGIES IN A KARST WATERSHED,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2003
Alex W. Fogle
ABSTRACT: Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean. [source]


Estimating Ground Water Recharge from Topography, Hydrogeology, and Land Cover

GROUND WATER, Issue 1 2005
Douglas S. Cherkauer
Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%. [source]


LANDSCAPE-SCALE ANALYSIS AND MANAGEMENT OF CUMULATIVE IMPACTS TO RIPARIAN ECOSYSTEMS: PAST, PRESENT, AND FUTURE,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2001
Eric D. Stein
ABSTRACT: Analyses of cumulative impacts to riparian systems is an important yet elusive goal. Previous analyses have focused on comparing the number of hectares impacted to the number of hectares restored, without addressing the loss of riparian function or the effect of the spatial distribution of impacts. This paper presents an analysis of the spatial distribution of development-related impacts to riparian ecosystems, that were authorized under Section 404 of the Clean Water Act. Impacts on habitat structure, contiguity, and landscape context were evaluated using functional indices scaled to regional reference sites. Impact sites were mapped using GIS and analyzed for spatial associations. Positive spatial autocorrelation (i.e. clustering of impact sites) resulted from the piecemeal approach to impact assessment, which failed to prevent cumulative impacts. Numerous small projects in close proximity have resulted in adverse impacts to entire stream reaches or have fragmented the aquatic resources to a point where overall functional capacity is impaired. Additionally, the ecological functions of unaffected areas have been diminished due to their proximity to degraded areas. A proactive approach to managing cumulative impacts is currently being used in Orange County, California as part of a Corps of Engineers sponsored Special Area Management Plan (SAMP). The SAMP process is evaluating the ecological conditions and physical processes of the study watersheds and attempting to plan future development in a manner that will guard against cumulative impacts. [source]


EFFECT OF ORIENTATION OF SPATIALLY DISTRIBUTED CURVE NUMBERS IN RUNOFF CALCULATIONS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2000
Glenn E. Moglen
ABSTRACT: The NRCS curve number approach to runoff estimation has traditionally been to average or "lump" spatial variability into a single number for purposes of expediency and simplicity in calculations. In contrast, the weighted runoff curve number approach, which handles each individual pixel within the watershed separately, tends to result in larger estimates of runoff than the lumped approach. This work proposes further enhancements that consider not only spatial variability, but also the orientation of this variability with respect to the flow aggregation pattern of the drainage network. Results show that the proposed enhancements lead to much reduced estimates of runoff production. A revised model that considers overland flow lengths, consistent with existing NRCS concepts is proposed, which leads to only mildly reduced runoff estimates. Although more physically-based, this revised model, which accounts directly for spatially distributed curve numbers and flow aggregation, leads to essentially the same results as the original, lumped runoff model when applied to three study watersheds. Philosophical issues and implications concerning the appropriateness of attempting to disaggregate lumped models are discussed. [source]