Home About us Contact | |||
Strong Promoter (strong + promoter)
Selected AbstractsIsolation and characterization of Tn -Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1ENVIRONMENTAL MICROBIOLOGY, Issue 1 2005Julien Maillard Summary A new 9.9 kb catabolic transposon, Tn -Dha1, containing the gene responsible for tetrachloroethene (PCE) reductive dechlorination activity, was isolated from Desulfitobacterium hafniense strain TCE1. Two fully identical copies of the insertion sequence ISDha1, a new member of the IS256 family, surround the gene cluster pceABCT, a truncated gene for another transposase and a short open reading frame with homology to a member of the twin-arginine transport system (tatA). Evidence was obtained by Southern blot for an alternative form of the transposon element as a circular molecule containing only one copy of ISDha1. This latter structure most probably represents a dead-end product of the transposition of Tn -Dha1. Strong indications for the transposition activity of ISDha1 were given by polymerase chain reaction (PCR) amplification and sequencing of the intervening sequence located between both inverted repeats (IR) of ISDha1 (IR junction). A stable genomic ISDha1 tandem was excluded by quantitative real-time PCR. Promoter mapping of the pceA gene, encoding the reductive dehalogenase, revealed the presence of a strong promoter partially encoded in the right inverted repeat of ISDha1. A sequence comparison with pce gene clusters from Desulfitobacterium sp. strains PCE-S and Y51 and from Dehalobacter restrictus, all of which show 100% identity for the pceAB genes, indicated that both Desulfitobacterium strains seem to possess the same transposon structure, whereas only the pceABCT gene cluster is conserved in D. restrictus. [source] Characterization of the Cph1 holo-phytochrome from Synechocystis sp.FEBS JOURNAL, Issue 7 2001PCC 680 The cph1 gene from the unicellular cyanobacterium Synechoycstis sp. PCC 6803 encodes a protein with the characteristics of plant phytochromes and histidine kinases of two-component phospho-relay systems. Spectral and biochemical properties of Cph1 have been intensely studied in vitro using protein from recombinant systems, but virtually nothing is known about the situation in the natural host. In the present study, His6 -tagged Cph1 was isolated from Synechocystis cells. The cph1,his gene was expressed either under the control of the natural cph1 promoter or over-expressed using the strong promoter of the psbA2 gene. Upon purification with nickel affinity chromatography, the presence of Cph1 in extracts was confirmed by immunoblotting and Zn2+ -induced fluorescence. The Cph1 extracts exhibited a red/far-red photoactivity characteristic of phytochromes. Difference spectra were identical with those of the phycocyanobilin adduct of recombinant Cph1, implying that phycocyanobilin is the chromophore of Cph1 in Synechocystis. [source] Robust salivary gland-specific transgene expression in Anopheles stephensi mosquitoINSECT MOLECULAR BIOLOGY, Issue 4 2006S. Yoshida Abstract Malaria sporozoites invade the mosquito salivary glands and wait in the salivary duct until the next blood feeding. The mechanisms of the process and molecules involved in the salivary gland invasion remain largely unknown. To establish a robust salivary gland-specific transgene expression in Anopheles stephensi, we obtained a salivary gland-specific promoter for a gene encoding anopheline antiplatelet protein (AAPP). The aapp promoter is a female salivary gland-specific and blood meal-inducible strong promoter. Using this promoter, we generated a transgenic An. stephensi expressing abundant Discosoma sp. red fluorescent protein (DsRed) in the distal-lateral lobes of the glands, where the sporozoites invade preferentially. These results open up the possibilities of elucidating salivary gland,parasite interactions and generating transgenic mosquitoes refractory to parasites. [source] Regulation of catalase,peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosisMOLECULAR MICROBIOLOGY, Issue 4 2001Alexander S. Pym Mycobacterium tuberculosis has two genes for ferric uptake regulator orthologues, one of which, furA, is situated immediately upstream of katG encoding catalase,peroxidase, a major virulence factor that also activates the prodrug isoniazid. This association suggested that furA might regulate katG and other genes involved in pathogenesis. Transcript mapping showed katG to be expressed from a strong promoter, with consensus ,10 and ,35 elements, preceding furA. No promoter activity was demonstrated downstream of the furA start codon, using different gene reporter systems, indicating that furA and katG are co-transcribed from a common regulatory region. The respective roles of these two genes in the isoniazid susceptibility and virulence of M. tuberculosis were assessed by combinatorial complementation of a ,(furA,katG) strain that is heavily attenuated in a mouse model of tuberculosis. In the absence of furA, katG was upregulated, cells became hypersensitive to isoniazid, and full virulence was restored, indicating that furA regulates the transcription of both genes. When furA alone was introduced into the ,(furA,katG) mutant, survival in mouse lungs was moderately increased, suggesting that FurA could regulate genes, other than katG, that are involved in pathogenesis. These do not include the oxidative stress genes ahpC and sodA, or those for siderophore production. [source] Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulansFEBS JOURNAL, Issue 17 2003Michel Flipphi The ethanol utilization pathway in Aspergillus nidulans is a model system, which has been thoroughly elucidated at the biochemical, genetic and molecular levels. Three main elements are involved: (a) high level expression of the positively autoregulated activator AlcR; (b) the strong promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA); and (c) powerful activation of AlcR by the physiological inducer, acetaldehyde, produced from growth substrates such as ethanol and l -threonine. We have previously characterized the chemical features of direct inducers of the alc regulon. These studies allowed us to predict which type of carbonyl compounds might induce the system. In this study we have determined that catabolism of different amino acids, such as l -valine, l -isoleucine, l -arginine and l -proline, produces aldehydes that are either not accumulated or fail to induce the alc system. On the other hand, catabolism of d -galacturonic acid and putrescine, during which aldehydes are transiently accumulated, gives rise to induction of the alc genes. We show that the formation of a direct inducer from carboxylic esters does not depend on alcA -encoded alcohol dehydrogenase I or on AlcR, and suggest that a cytochrome P450 might be responsible for the initial formation of a physiological aldehyde inducer. [source] Enhancing rAAV vector expression in the lungTHE JOURNAL OF GENE MEDICINE, Issue 7 2005Isabel Virella-Lowell Abstract Despite favorable DNA transfer efficiency, gene expression from recombinant adeno-associated virus (rAAV2) vectors in the lung has been variable in the context of cystic fibrosis (CF) gene therapy. This is due, in part, to the large size of the CF transmembrane regulator (CFTR)-coding sequence which necessitates the use of compact endogenous promoter elements versus stronger exogenous promoters. We evaluated the possibility that gene expression from rAAV could be improved by using AAV capsid serotypes with greater tropism for the apical surface of airway cells (i.e. rAAV5 or rAAV1) and/or using strong promoters such as the cytomegalovirus (CMV) enhancer/chicken beta-actin hybrid (C,) promoter. The relative activity of the CMV immediate-early (CMVie) promoter, the C, promoter, and the C, promoter with a downstream woodchuck hepatitis virus post-transcriptional regulatory element (wpre) were assessed in vitro and in vivo in C57\Bl6 mice using human alpha-1 antitrypsin (hAAT) as a secreted reporter. In vivo, the C,-AAT-wpre group achieved maximum serum levels of 1.5 mg/ml of hAAT. AAV capsid serotypes were then compared in vivo utilizing the transcriptionally optimized CB-wpre cassette in rAAV serotype 1, 2 or 5 capsids (rAAV1, rAAV2, and rAAV5), utilizing luciferase as a reporter to compare expression over a wide dynamic range. The pulmonary luciferase levels at 8 weeks were similar in rAAV5 and rAAV1 groups (2.9 × 106 relative light units (RLU)/g tissue and 2.7 × 106 RLU/g tissue, respectively), both of which were much higher than rAAV2. Although the advantage of rAAV5 over rAAV2 in the lung has already been described, the availability of another serotype (rAAV1) capable of efficient gene transfer in the lung could be useful. Copyright © 2005 John Wiley & Sons, Ltd. [source] |