Home About us Contact | |||
Strong Interaction (strong + interaction)
Selected AbstractsDye-Sensitized Solar Cells Based on a Novel Fluorescent Dye with a Pyridine Ring and a Pyridinium Dye with the Pyridinium Ring Forming Strong Interactions with Nanocrystalline TiO2 FilmsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 1 2010Yousuke Ooyama Abstract As new-type donor,acceptor ,-conjugated dyes capable of forming a strong interaction between the electron-acceptor moiety of the sensitizers and a TiO2 surface, fluorescent dye OH11 and pyridinum dye OH12 with a pyridine and pyridinium ring as the electron-accepting group, respectively, have been designed and synthesized as photosensitizers for use in dye-sensitized solar cells (DSSCs). The fluorescent dye OH11 exhibits an absorption band at around 410 nm and a fluorescence band at around 530 nm. On the other hand, the pyridinum dye OH12 shows an absorption maximum at around 560 nm, assigned to a strong intramolecular charge-transfer excitation from the dibutylamino group to the pyridinium ring. The short-circuit photocurrent densities of the DSSCs prepared by using OH11 and OH12 are 4.33 and 1.74mA cm,2, and the solar energy-to-electricity conversion yields are 1.33 and 0.51,%, respectively, under simulated solar light [AM (air mass) 1.5, 100 mW,cm,2]. The open-circuit photovoltage for OH11 (525 mV) is higher than that of OH12 (444 mV). The effects of the configuration of the dyes on the TiO2 surface and of their chemical structures on the photovoltaic performances are discussed on the basis of semi-empirical molecular orbital calculations (AM1 and INDO/S), spectral analyses and cyclic voltammetry. [source] Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase IVPHYTOTHERAPY RESEARCH, Issue 1 2002Aleksi Abstract Chelerythrine, sanguinarine and an alkaloid extract from Macleaya cordata,sanguiritrin,were found to be inhibitors of aminopeptidase A and dipeptidyl peptidase IV, while fagaronine inhibited dipeptidyl peptidase IV only. At 50,,M, chelerythrine, sanguinarine and sanguiritrin inhibited aminopeptidase N by 82%, 82%, 88%, DPP IV by 38%, 62%, 57%, and fagaronine by 34%, respectively. When bovine serum albumin (500,,g/mL) was added, the inhibition of both proteases by quaternary benzo[c]phenanthridine alkaloids (QBA) (50,,M) was significantly diminished. Strong interaction of chelerythrine and sanguinarine with bovine and human serum albumin was proved by electrophoretic determination of their respective conditional binding constants. Copyright © 2002 John Wiley & Sons, Ltd. [source] Characterization of combustion-derived individual fine particulates by computer-controlled scanning electron microscopyAICHE JOURNAL, Issue 11 2009Lian Zhang Abstract Particulate matter (PM) emission from the combustion of solid fuels potentially poses a severe threat to the environment. In this article, a novel approach was developed to examine the properties of individual particles in PM. With this method, PM emitted from combustion was first size-segregated. Subsequently, each size was characterized by computer-controlled scanning electron microscopy (CCSEM) for both bulk property and single particle analysis. Combustion of bituminous coal, dried sewage sludge (DSS) and their mixture were conducted at 1200°C in a laboratory-scale drop tube furnace. Three individual sizes smaller than 2.5 ,m were investigated. The results indicate that a prior size-segregation can greatly minimize the particle size contrast and phase contrast on the backscattered images during CCSEM analysis. Consequently, high accuracy can be achieved for quantifying the sub-micron particles and their inherent volatile metals. Regarding the PM properties as attained, concentrations of volatile metals including Na, K, and Zn have a negative relationship with particle size; they are enriched in the smallest particles around 0.11 ,m as studied here. Strong interactions can occur during the cofiring of coal and DSS, leading to the distinct properties of PM emitted from cofiring. The method developed here and results attained from it are helpful for management of the risks relating to PM emission during coal-fired boilers. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Performance evaluation of synthesized acrylic acid grafted polypropylene within CaCO3/polypropylene compositesPOLYMER COMPOSITES, Issue 2 2000F. Rahma A polymeric coupling agent acrylic acid grafted polypropylene (AAgPP) was synthesized and its efficiency in CaCO3/PP composite was investigated. The grafting of acrylic acid monomer (AA) onto polypropylene was performed using an internal mixer. The effect of peroxyde, acrylic acid monomer content, temperature and RPM was studied. A grafting reaction between the polypropylene and the acrylic acid was evidenced through FTIR, UV, DSC and MFI testing. The highest grafting yield was obtained at 0.85 phr peroxide and 5 phr acrylic acid. The selected mixing temperature was 200°C, the rotor speed 150 rpm and the residence time 5 min. The obtained coupling agent (AAgPP) was used with 30 wt% CaCO3 filled polypropylene. Strong interactions with the composite were observed. The effect of increasing the coupling agent content on Izod impact and tensile properties was investigated. A maximum in the above properties is attained at 15 wt% AAgPP. The most important effect is clearly shown in the Izod test. In fact, a threefold increase has been observed for either notched and untoched specimen. The 15 wt% AAgPP is considered to be a critical concentration for the composite considered. This corresonds to maximum interactions occurring between the matrix and the filler. SEM analysis clearly shows strong interactions between the filler and the matrix in the presence of acrylic acid grafted polypropylene. This is another proof of the efficiency of the synthesized AAgPP as a potential coupling agent for CaCO3 filled PP. [source] Molecular recognition of sugars by lanthanide (III) complexes of a conjugate of N, N -bis[2-[bis[2-(1, 1-dimethylethoxy)-2-oxoethyl]amino]ethyl]glycine and phenylboronic acidCONTRAST MEDIA & MOLECULAR IMAGING, Issue 4 2007Elisa Battistini Abstract A novel conjugate of phenylboronic acid and an Ln(DTPA) derivative, in which the central acetate pendant arm was replaced by the methylamide of L -lysine, was synthesized and characterized. The results of a fit of variable 17O NMR data and a 1H NMRD profile show that the water residence lifetime of the Gd(III) complex (150,ns) is shorter than that of the parent compound Gd(DTPA)2, (303,ns). Furthermore, the data suggest that several water molecules in the second coordination sphere of Gd(III) contribute to the relaxivity of the conjugate. The Ln(III) complexes of this conjugate are highly suitable for molecular recognition of sugars. The interaction with various sugars was investigated by 11B NMR spectroscopy. Thanks to the thiourea function that links the phenylboronic acid targeting vector with the DTPA derivative, the interactions are stronger than that of phenylboronic acid itself. In particular, the interaction with N -propylfructosamine, a model for the glucose residue in glycated human serum albumin (HSA), is very strong. Unfortunately, the complex also shows a rather strong interaction with hexose-free HSA (KA,=,705,±,300). Copyright © 2007 John Wiley & Sons, Ltd. [source] Nano vanadyl-phthalocyanine crystals fabricated on KBr substrateELECTRICAL ENGINEERING IN JAPAN, Issue 2 2008Suguru Mototani Abstract Vanadyl-phthalocyanine (VOPc) thin films deposited on a KBr substrate by molecular beam epitaxy (MBE) consist of nano-VOPc crystals epitaxially grown. The nano-VOPc crystals acquire a square shape as a result of annealing at 150°C. The size of the nano-crystals is controllable by changing the conditions of MBE deposition and thermal treatment. The growth processes of nano-crystals on the KBr substrate are elucidated experimentally and are shown to be closely related to strong interaction between the VOPc molecules and the KBr substrate. Their mechanisms can be explained in terms of surface diffusion of the VOPc molecules on the KBr substrate. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(2): 41,48, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20645 [source] Synthesis of para -Amino Benzoic Acid,TiO2 Hybrid Nanostructures of Controlled Functionality by an Aqueous One-Step ProcessEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2008Raed Rahal Abstract In situ amino acid surface-modified TiO2 nanoparticle syntheses were performed by a simple one-pot hydrolysis of heteroleptic titanium alkoxide [Ti(OiPr)3(O2CC6H4NH2)]m in water with NnBu4Br. This process allowed precise control of the surface grafting rate by varying the amount of precursors and provided highly functionalized nanomaterials. Their compositions and microstructures were determined by C, H and N elemental analyses, TGA-MS, 13C CP-MAS NMR, XRD, TEM, BET, Raleigh diffusion, FTIR, Raman, XPS and UV/Vis experiments. The results indicated that (i) the aggregation rate increased with an increase in the loading of the organic substrate and (ii) the amino acid is chemisorbed as a carboxylate group onto the TiO2 nanoparticles, which leads to a strong interaction between the amino acid and the TiO2 nanoparticle and good stability of these hybrids. Applications of low-aggregated nanomaterials were demonstrated as efficient protection additive against UVA + UVB radiations.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Tetracyanoquinodimethanido Derivatives of (Terpyridine)- and (Phenanthroline)metal Complexes , Structural and Magnetic Studies of Radical-Ion SaltsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 3 2005Cristina Alonso Abstract Several derivatives of formulae [M(terpy)2](TCNQ)2 or [M(terpy)2](TCNQ)3 (M = Ni, Cu, Zn; terpy = 2,2,:6,,2"-terpyridine; TCNQ= 7,7,8,8-tetracyanoquinodimethane) and [M(phen)3](TCNQ)2 or [M(phen)3](TCNQ)4 (M = Fe, Ni; phen = 1,10-phenanthroline) have been obtained. The crystal structures of [M(terpy)2](TCNQ)2 (M = Ni, Cu) show that the metal is surrounded by the terpyridine nitrogen atoms in a closed octahedral environment and the TCNQ anions are dimerised by , overlap. The cationic [M(terpy)2]2+ and the anionic [TCNQ]22, groups alternate in the crystal. For the derivatives with three TCNQ groups, the existence of a stack of trimeric [TCNQ]32, ions having electronic delocalisation is proposed. The compound [Fe(phen)3](TCNQ)2, which shows a strong interaction between TCNQ anions, led to the formation of a , bond in the diamagnetic species [TCNQ,TCNQ], while the nickel analogue is expected to have a localised structure formed by alternation of cationic metal complexes and dimeric [TCNQ]22, anions similar to those observed in the analogous terpy derivatives. The derivatives having four TCNQ groups also show electronic delocalisation and a 1D stack based on the magnetic data is proposed. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Dye-Sensitized Solar Cells Based on a Novel Fluorescent Dye with a Pyridine Ring and a Pyridinium Dye with the Pyridinium Ring Forming Strong Interactions with Nanocrystalline TiO2 FilmsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 1 2010Yousuke Ooyama Abstract As new-type donor,acceptor ,-conjugated dyes capable of forming a strong interaction between the electron-acceptor moiety of the sensitizers and a TiO2 surface, fluorescent dye OH11 and pyridinum dye OH12 with a pyridine and pyridinium ring as the electron-accepting group, respectively, have been designed and synthesized as photosensitizers for use in dye-sensitized solar cells (DSSCs). The fluorescent dye OH11 exhibits an absorption band at around 410 nm and a fluorescence band at around 530 nm. On the other hand, the pyridinum dye OH12 shows an absorption maximum at around 560 nm, assigned to a strong intramolecular charge-transfer excitation from the dibutylamino group to the pyridinium ring. The short-circuit photocurrent densities of the DSSCs prepared by using OH11 and OH12 are 4.33 and 1.74mA cm,2, and the solar energy-to-electricity conversion yields are 1.33 and 0.51,%, respectively, under simulated solar light [AM (air mass) 1.5, 100 mW,cm,2]. The open-circuit photovoltage for OH11 (525 mV) is higher than that of OH12 (444 mV). The effects of the configuration of the dyes on the TiO2 surface and of their chemical structures on the photovoltaic performances are discussed on the basis of semi-empirical molecular orbital calculations (AM1 and INDO/S), spectral analyses and cyclic voltammetry. [source] Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate NanoparticlesADVANCED FUNCTIONAL MATERIALS, Issue 16 2010Ding Zhou Abstract A kind of graphene-based nanoporous material is prepared through assembling graphene sheets mediated through polyoxometalate nanoparticles. Owing to the strong interaction between graphene and polyoxometalate, 2D graphene sheets with honeycomb-latticed carbon atoms could assemble into a porous structure, in which 3D polyoxometalate nanoparticles serve as the crosslinkers. Nitrogen and hydrogen sorption analysis reveal that the as-prepared graphene-based hybrid material possesses a specific surface area of 680 m2 g,1 and a hydrogen uptake volume of 0.8,1.3 wt%. Infrared spectrometry is used to probe the electron density changes of polyoxometalate particle in the redox-cycle and to verify the interaction between graphene and polyoxometalate. The as-prepared graphene-based materials are further characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. [source] Cover Picture: Hierarchically Organized Superstructure Emerging from the Exquisite Association of Inorganic Crystals, Organic Polymers, and Dyes: A Model Approach Towards Suprabiomineral Materials (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 9 2005Mater. Abstract Suprabiomineral materials possessing hierarchically organized superstructures are investigated by Imai and Oaki on p.,1407. Inorganic crystals, organic polymers, and functional dyes have assembled via a simple biomimetic route into a superstructure that contains six different tiers, from the macroscale to the nanoscale. The hierarchy originates from the strong interaction between crystals and polymers and the diffusion-controlled conditions. The versatile role of the polymer is found to be essential for the construction of a superstructure. This approach promises to generate novel types of functional materials with controllable structures and properties. We report a novel hierarchically organized superstructure emerging from an exquisite association of inorganic crystals, organic polymers, and dyes. The resultant K2SO4/poly(acrylic acid) composite includes five different tiers from the nanoscopic to the macroscopic. An additional new tier leading to functionality is formed by the incorporation of organic dyes that are organized in a nanospace. The emergent superstructure and properties are designed through changes in polymer concentration. The multiple roles of the polymer realize the generation of the architecture at each size scale. This model approach should be widely applicable to other systems, allowing for the preparation of innovative materials by an appropriate combination of crystals, polymers, and functional molecules. [source] Proton-Coupled Electron Transfer of Unsaturated Fatty Acids and Mechanistic Insight into LipoxygenaseHELVETICA CHIMICA ACTA, Issue 10 2006Shunichi Fukuzumi Abstract A proton-coupled electron transfer (PCET) process plays an important role in the initial step of lipoxygenases to produce lipid radicals which can be oxygenated by reaction with O2 to yield the hydroperoxides stereoselectively. The EPR spectroscopic detection of free lipid radicals and the oxygenated radicals (peroxyl radicals) together with the analysis of the EPR spectra has revealed the origin of the stereo- and regiochemistry of the reaction between O2 and linoleyl (=,(2Z)-10-carboxy-1-[(1Z)-hept-1-enyl]dec-2-enyl) radical in lipoxygenases. The direct determination of the absolute rates of H-atom-transfer reactions from a series of unsaturated fatty acids to the cumylperoxyl (=,(1-methyl-1-phenylethyl)dioxy) radical by use of time-resolved EPR at low temperatures together with detailed kinetic investigations on both photoinduced and thermal electron-transfer oxidation of unsaturated fatty acids provides the solid energetic basis for the postulated PCET process in lipoxygenases. A strong interaction between linoleic acid (=,(9Z,12Z)-octadeca-9,12-dienoic acid) and the reactive center of the lipoxygenases (FeIIIOH) is suggested to be involved to make a PCET process to occur efficiently, when an inner-sphere electron transfer from linoleic acid to the FeIII state is strongly coupled with the proton transfer to the OH group. [source] Effect of Through-Bond Interaction on Conformation and Structure in Rod-Shaped Donor,Acceptor Systems.HELVETICA CHIMICA ACTA, Issue 3 2003Part The crystal structures of five N -arylpiperidin-4-one derivatives 2P2, 3P2, 5P2, 1P3, and 2P3 are presented (Fig.,2 and Tables,1,5) and discussed together with the derivatives 1P2 and 4P2 published previously. In all but one structure, 1P2, the aryl group is in an equatorial position. The piperidine ring adopts a normal chair conformation. In 1P2, the piperidine ring central CC bonds are significantly elongated, which is consistent with the idea that through-bond interaction is more pronounced in the axial conformation. Through-bond interaction also influences the pyramidalization at the piperidine C(4)-atom in such a way that a strong interaction is directing the ethylene C-atom C(9) into the axial direction. [source] Hyaluronan-binding peptide can inhibit tumor growth by interacting with Bcl-2INTERNATIONAL JOURNAL OF CANCER, Issue 1 2004Ninfei Liu Abstract Previous studies have indicated that proteins that bind hyaluronan can also inhibit the growth of tumor cells. To determine if synthetic peptides also possessed these properties, we tested a series of polypeptides containing structural motifs from different proteins for their ability to bind [3H]hyaluronan, and identified one compound termed P4 that had a particularly strong interaction. Further studies revealed that P4 also inhibited the growth of tumor cells in tissue culture as well as on the chorioallantoic membranes of chicken embryos. In addition, expression vectors for P4 caused tumor cells to grow slower in nude mice and reduced their vascularization. The P4 peptide also inhibited VEGF-induced angiogenesis in the chorioallantoic membranes of chicken embryos. Studies on cultured cells indicated that P4 induced apoptosis, which was blocked by a pan-caspase inhibitor. Confocal microscopy revealed that shortly after its uptake, P4 became associated with mitochondria. Immunoprecipitation indicated that P4 could bind to Bcl-2 and Bcl-xL, which are associated with mitochondria and regulate apoptosis. This was also supported by the fact that P4 induced the release of cytochrome c from preparations of mitochondria. Taken together, these results suggest that P4 binds to Bcl-2 and related proteins and this activates the apoptotic cascade. © 2003 Wiley-Liss, Inc. [source] Sulfobutyl Ether-,-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic CatalysisADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2005Philippe Blach Abstract The potentialities of sulfobutyl ether-,-CDs derivatives as supramolecular carrier in a biphasic Tsuji,Trost reaction catalyzed by a water-soluble palladium complex of trisulfonated triphenylphosphine have been investigated. The efficiency of these cyclodextrins (CDs) strongly depends on the average molar substitution degree of cyclodextrin and the highest rate enhancements were obtained with cyclodextrins containing about 7 sulfobutyl ether groups. This result was attributed to the absence of a strong interaction between this cyclodextrin and the trisulfonated triphenylphosphine used to dissolve the catalyst in the aqueous phase and to the presence of an extended hydrophobic cavity allowing a better molecular recognition between the substrate and the cyclodextrin. This constitutes the first example of a non-interacting ,-cyclodextrin/phosphine couple with high catalytic activities. [source] Evidence that dingoes limit abundance of a mesopredator in eastern Australian forestsJOURNAL OF APPLIED ECOLOGY, Issue 3 2009Chris N. Johnson Summary 1Aggressive behaviour of top predators may have strong effects on the distribution and abundance of mesopredator species. Such interactions between predator species can reduce the intensity of predation on vulnerable prey. Suppression of mesopredators by top predators is a potentially important process that could protect small prey species from unsustainable predation. 2There is some evidence that in Australia, the dingo Canis lupus suppresses populations of the red fox Vulpes vulpes. This interaction could be significant to biodiversity conservation because while dingoes have been in Australia for several thousand years and coexist with a wide range of small mammals, the fox is a recent arrival which has caused declines and extinctions, and continues to threaten many prey species. 3However the strength of the effect of dingoes on foxes is unclear, and some published data have been interpreted as demonstrating no relationship between abundance of the two species. These data come from forested habitats in eastern Australia, and may suggest that negative relationships of dingoes and foxes do not occur in complex habitats. 4We re-analyse published data on fox vs. wild dog (i.e. dingoes plus, potentially, feral dogs and hybrids) abundance in eastern forests. These data reveal a triangular relationship of fox to wild dog density: when wild dogs are abundant, foxes are consistently rare, while when wild dogs are rare, foxes may be abundant but are not always so. This suggests that the abundance of wild dogs sets an upper limit on the abundance of foxes, but does not fully determine fox abundance. 5Standard regression and correlation methods are not appropriate for analysing such triangular relationships. We apply two statistical methods that can be used to characterize the edges of data distributions, and use these to demonstrate a negative relationship of maximum fox abundance to the abundance of wild dogs. 6Synthesis and applications. Our analysis adds to evidence that dingoes may have negative effects on red foxes in a wide range of habitats, and therefore, that dingoes may be significant to conservation of mammal biodiversity in Australia. It also illustrates problems and solutions in the statistical analysis of abundance of one species as a function of the abundance of another species with which it has a strong interaction. [source] Optical and thermo electrical properties of ZnO nano particle filled polystyreneJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010Mulayam S. Gaur Abstract The study of optical and thermally stimulated electrical properties such as optical band gap, refractive index, X-ray spectra, SEM spectra, thermally stimulated discharge current (TSDC), differential scanning calorimetry (DSC) have been undertaken in ZnO nanoparicle filled polystyrene nanocomposite thin film of 30 ,m thickness. The appearance of single TSDC peak at temperature 408 ± 5 K in nanocomposite samples shows the charge carriers injected from deeper trapping levels. It is due to the modification of surface and bulk properties of polystyrene by filling of ZnO nanoparticles. In other hand, the strong interaction of nanoparticles with polymer matrix is the expected reason of improvement of crystallite size, optical energy band gap, refractive index, TSDC, glass transition temperature, and charge storage. It is confirmed from SEM images that the modifications of these properties are caused by creation of clusters in amorphous,crystalline boundaries of pristine polystyrene. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Oxidative polymerization of pyrrole photocatalyzed by TiO2 nanoparticles and interactions in the compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Zhen Weng Abstract Oxidative polymerization of pyrrole is initiated by photoexcited TiO2 nanoparticles. Pyrrole oligomers and polypyrrole (PPy) are continuously produced with reaction time. The conversion of pyrrole monomer changes as a function of the concentration of TiO2 nanoparticles. It is found that PPy in the composite has the conjugated structure and is partially oxidized with a formation of positively charged N+. Results from X-ray photoelectron spectroscopy and Raman analysis consistently indicate that a strong interaction is established between the TiO2 and PPy. According to the results of UV,vis spectroscopy, a mechanism of photocatalytic oxidation is proposed for this polymerization. The interaction between TiO2 and PPy is found to arise from the photocatalytic reaction and discussed in terms of photoinduced Ti3+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Miscibility and rheological properties of poly(vinyl chloride)/styrene,acrylonitrile blends prepared by melt extrusionJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007Hyun Sik Moon Abstract Styrene,acrylonitrile (SAN) with acrylonitrile (AN) concentrations of 11.6,26 wt % and ,-methylstyrene acrylonitrile (,MSAN) with a wide range of AN concentrations are miscible with poly(vinyl chloride) (PVC) through solution blending. Here we examine the rheological properties and miscibility of PVC/SAN and PVC/,MSAN blends prepared by melt extrusion for commercial applications. We have investigated the rheological properties of the blends with a rheometer and a melt indexer. The PVC/SAN and PVC/,MSAN blends have a low melting torque, a long degradation time, and a high melt index, and this means that they have better processability than pure PVC. The miscibility of the blends has been characterized with differential scanning calorimetry, dynamic mechanical thermal analysis, and advanced rheometrics expansion system analysis. The miscibility of the blends has also been characterized with scanning electron microscopy. The SAN series with AN concentrations of 24,31 wt % is immiscible with PVC by melt extrusion, whereas ,MSAN with 31 wt % AN is miscible with PVC, even when they are blended by melt extrusion, because of the strong interaction between PVC and ,MSAN. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source] Musculoskeletal Rehabilitation in Osteoporosis: A Review,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2004Michael Pfeifer Abstract Measures of musculoskeletal rehabilitation play an integral part in the management of patients with increased fracture risk because of osteoporosis or extraskeletal risk factors. This article delineates current scientific evidence concerning nonpharmacologic approaches that are used in conjunction with pharmacotherapy for prevention and management of osteoporosis. Fractures caused by osteoporotic fragility may be prevented with multidisciplinary intervention programs, including education, environmental modifications, aids, and implementation of individually tailored exercise programs, which are proved to reduce falls and fall-related injuries. In addition, strengthening of the paraspinal muscles may not only maintain BMD but also reduce the risk of vertebral fractures. Given the strong interaction between osteoporosis and falls, selection of patients for prevention of fracture should be based on bone-related factors and on risk factors for falls. Rehabilitation after vertebral fracture includes proprioceptive dynamic posture training, which decreases kyphotic posturing through recruitment of back extensors and thus reduces pain, improves mobility, and leads to a better quality of life. A newly developed orthosis increases back extensor strength and decreases body sway as a risk factor for falls and fall-related fractures. Hip fractures may be prevented by hip protectors, and exercise programs can improve strength and mobility in patients with hip fracture. So far, there is no conclusive evidence that coordinated multidisciplinary inpatient rehabilitation is more effective than conventional hospital care with no rehabilitation professionals involved for older patients with hip fracture. Further studies are needed to evaluate the effect of combined bone- and fall-directed strategies in patients with osteoporosis and an increased propensity to falls. [source] Effect of inhibitory compounds on the anaerobic digestion performance of diluted wastewaters from the alimentary industryJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2009Rafael Camarillo Abstract BACKGROUND: Up to now the effect of inhibitory compounds on the anaerobic digestion performance of urban and industrial wastewaters has been mostly studied in fluidized bed and upflowing anaerobic sludge blanket (UASB) bioreactors but not in upflow packed-bed biodigesters. RESULTS: In this paper, response surface methodology (RSM) was used to quantify the effect of various inhibitory compounds (olive oil, ethanol and phenol) on chemical oxygen demand (COD) removal and biogas production rate from synthetic solutions and real industrial wastewaters by anaerobic digestion. The synthetic solutions possessed the same composition in these inhibitory compounds as diluted effluents from olive oil mill and winery industries. The process was performed in a laboratory scale digester containing anaerobic sludge from the Urban Reclamation Station of Toledo (Spain). The comparison of both individual factors and interactions between factors showed that the addition of olive oil at moderate concentrations (up to 0.5% w/w) did not change the performance of the process in comparison with that observed when feeding to the system a model solution (51.5% COD removal, 0.65 L biogas day,1). However, low concentrations of ethanol or phenol (250 and 150 mg L,1, respectively) almost completely inhibited the methanogenic phase. Moreover, a strong interaction between ethanol and phenol concentrations on COD removal was observed. CONCLUSION: The experimental results showed quantitatively the importance of some inhibitory compounds on anaerobic treatment of both synthetic solutions and real wastewaters from olive oil mill and winery industries. Inhibitory effects are closely related to both the organic loads and the anaerobic bioreactor used. Copyright © 2009 Society of Chemical Industry [source] Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizasJOURNAL OF ECOLOGY, Issue 6 2009Benjamin A. Sikes Summary 1.,A major benefit of the mycorrhizal symbiosis is that it can protect plants from below-ground enemies, such as pathogens. Previous studies have indicated that plant identity (particularly plants that differ in root system architecture) or fungal identity (fungi from different families within the Glomeromycota) can determine the degree of protection from infection by pathogens. Here, we test the combined effects of plant and fungal identity to assess if there is a strong interaction between these two factors. 2.,We paired one of two plants (Setaria glauca, a plant with a finely branched root system and Allium cepa, which has a simple root system) with one of six different fungal species from two families within the Glomeromycota. We assessed the degree to which plant identity, fungal identity and their interaction determined infection by Fusarium oxysporum, a common plant pathogen. 3.,Our results show that the interaction between plant and fungal identity can be an important determinant of root infection by the pathogen. Infection by Fusarium was less severe in Allium (simple root system) or when Setaria (complex root system) was associated with a fungus from the family Glomeraceae. We also detected significant plant growth responses to the treatments; the fine-rooted Setaria benefited more from associating with a member of the family Glomeraceae, while Allium benefited more from associating with a member of the family Gigasporaceae. 4.,Synthesis. This study supports previous claims that plants with complex root systems are more susceptible to infection by pathogens, and that the arbuscular mycorrhizal symbiosis can reduce infection in such plants , provided that the plant is colonized by a mycorrhizal fungus that can offer protection, such as the isolates of Glomus used here. [source] The role of rainfall and predators in determining synchrony in reproduction of savanna trees in Serengeti National Park, TanzaniaJOURNAL OF ECOLOGY, Issue 1 2007SIMON A. R. MDUMA Summary 1We examined the factors determining synchrony in reproduction in nine Acacia and six other tree species in the Serengeti ecosystem. 2We test two hypotheses: (i) an abiotic hypothesis where the primary determinant of synchrony is an adaptation to water availability; and (ii) biotic hypotheses where these adaptations to water can be further refined by additional adaptations to avoid predators, or attract seed and fruit dispersers. 3Flowering and fruiting were recorded monthly for individually marked trees during 1997,2004. Flowering in different species occurs semi-annually, annually or, in the case of one species, once every 2 years. For most species synchrony of flowering was correlated with seasonal rainfall, with lags related to the mean height of the species; small species flowered during the rains while larger species flowered in the dry season. Fruiting seasons occurred at the end of the rains irrespective of the flowering season. 4Most species showed flowering synchrony greater than expected from the distribution of rainfall. This may be related to avoidance of insect seed predators through predator satiation. Two Acacias showed multi-annual fruiting (masting), possibly as a predator avoidance mechanism. Acacia tortilis has two flowering seasons: a dry season flowering with early abortion of pods and a wet season flowering producing successful fruits. 5Two species of Commiphora appeared to be synchronized so as to attract birds that disperse seeds. Acacia tortilis produced indehiscent pods attractive to ungulates, possibly to kill bruchid beetles during digestion and so increase seed viability. 6Our results suggest that synchrony in these trees is caused by a strong interaction between abiotic and biotic factors. Closely related species have different reproductive patterns of synchrony that seem to be adapted to different combinations of rainfall, predators and dispersers. Rainfall is the primary determinant but the activities of predators and dispersers increase the degree of synchrony. [source] The conformation of fusogenic B18 peptide in surfactant solutions,JOURNAL OF PEPTIDE SCIENCE, Issue 4 2008Sandra Rocha Abstract The interaction of B18 peptide with surfactants has been studied by circular dichroism spectroscopy and fluorescence measurements. B18 is the fusogenic motif of the fertilization sea urchin protein. The peptide forms an ,-helix structure when interacting with positively or negatively charged surfactants below and above the critical micellar concentration (CMC). The ,-helix formation is due to binding of surfactant monomers rather than the formation of surfactant micelles on the peptide. Fluorescence measurements show that the CMC of the negatively charged surfactant increases in the presence of B18, supporting the fact that there is a strong interaction between the peptide and monomers. Nonionic surfactant monomers have no effect on the peptide structure, whereas the micelles induce an ,-helical conformation. In this case the helix stabilization results from the formation of surfactant micelles on the peptide. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] Synthesis and characterization of carbon nanotube/polypyrrole core,shell nanocomposites via in situ inverse microemulsionJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2005Yijun Yu Abstract We demonstrate here a feasible approach to the preparation of multiwalled carbon nanotube (MWNT)/polypyrrole (PPy) core,shell nanowires by in situ inverse microemulsion. Transmission electron microscopy and scanning electron microscopy showed that the carbon nanotubes were uniformly coated with a PPy layer with a thickness of several to several tens of nanometers, depending on the MWNT content. Fourier transform infrared spectra suggested that there was strong interaction between the ,-bonded surface of the carbon nanotubes and the conjugated structure of the PPy shell layer. The thermal stability and electrical conductivity of the MWNT/PPy composites were examined with thermogravimetric analysis and a conventional four-probe method. In comparison with pure PPy, the decomposition temperature of the MWNT/PPy (1 wt % MWNT) composites increased from 305 to 335 °C, and the electrical conductivity of the MWNT/PPy (1 wt % MWNT) composites increased by 1 order of magnitude. The current,voltage curves of the MWNT/PPy nanocomposites followed Ohm's law, reflecting the metallic character of the MWNT/PPy nanocomposites. The cyclic voltammetry measurements revealed that PPy/MWNT composites showed an enhancement in the specific charge capacity with respect to that of pure PPy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6105,6115, 2005 [source] SENSORY CHARACTERIZATION OF TEXTURE AND FLAVOR OF HIGH VISCOSITY GELS MADE WITH DIFFERENT THICKENERS,JOURNAL OF TEXTURE STUDIES, Issue 4 2000NIINA KÄLVIÄINEN ABSTRACT Four thickeners (pectin, gelatin, starch and gelatin + starch) and two aroma concentrations (1.4 and 0.7 mL aroma / 1 kg candy base) were used for manufacturing high viscosity gel systems, i.e. strawberry candies. The salient texture and flavor attributes of the samples were identified and evaluated by a trained descriptive panel. The thickeners strongly affected texture and flavor attributes of the samples, while the two aroma concentrations did not differentiate between samples. Each thickener used produced its own characteristic texture. The gels with weak and fragile texture had stronger flavor intensities and tart flavor than the gels with strong and cohesive texture. Because of the strong interaction between texture and flavor, the results have major implications for the production of high viscosity gels such as candies. [source] Poly(ethylene oxide)- block -poly[2-(dimethylamino)ethyl methacrylate] as Strengthening Agent in Paper: Dynamic Mechanical CharacterizationMACROMOLECULAR MATERIALS & ENGINEERING, Issue 3 2010Arja-Helena Vesterinen Abstract To enhance adhesion properties of PEO on wood fibers, block polymers of PEO and 2-(dimethylamino)ethyl methacrylate were synthesized. The polymers were further modified to obtain strongly cationic species. The resulting polymers were used as additives in paper sheets. Papers were studied by DMA in a controlled-humidity chamber. Addition of the PEO block co-polymers enhanced paper strength. The strength of the paper sheets was highest when polymer with molecular weight of 400,kg,·,mol,1 was used as an additive. Highly cationic block co-polymers increased moduli of paper sheets more than their weakly cationic analogs, which indicated strong interaction with fiber surfaces. Strength of the paper sheets decreased both with increased temperature and humidity. [source] Poly(vinyl alcohol)/Clay-Based Nanocomposite Hydrogels: Swelling Behavior and CharacterizationMACROMOLECULAR MATERIALS & ENGINEERING, Issue 5 2007Caio M. Paranhos Abstract Polymer/clay composite hydrogels were prepared based on PVA hydrogels containing 3,10 wt.-% MOM. Their microstructure and morphology were studied by FT-IR, WAXS and SEM, whereas the interactions between MOM and PVA were evaluated by thermal analyses. The swelling ratios for the PVA/MOM hydrogels decrease with increasing MOM content. WAXS results indicate that MOM was intercalates, and DSC results show a strong interaction between PVA and MOM. This interaction results in a stable network, which is confirmed by the elastic modulus and the thermal decomposition behavior of the hydrogels. Therefore, MOM acts as a co-crosslinker, improving the stability of the network. [source] Role of Star-Like Hydroxylpropyl Lignin in Soy-Protein PlasticsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 5 2006Ming Wei Abstract Summary: Star-like hydroxypropyl lignin (HL) was compounded into soy protein isolated (SPI) to develop a potential biodegradable plastic with better mechanical performance than pure sheet-SPI. The structure and properties of the composite materials were characterized by WAXD, DSC, SEM, TEM and tensile tests. The addition of just 2 wt.-% HL resulted in tensile strength (,b) of 16.8 MPa, 2.3 times that of pure sheet-SPI, with no accompanying decrease in elongation at break as a result of strong interaction and with good miscibility among components. As the HL content increased, the HL molecules could self-aggregate as oblate supramolecular domains, while the stronger interactions between HL and glycerol resulted in the detaching of glycerol from the SPI matrix. It can be concluded that the insertion of HL as single molecules into the SPI matrix would provide materials with optimum mechanical properties. Compared with other lignin/SPI composites, the stretching chains on HL play a key role in the improvement of mechanical properties because of a stronger adhesion of HL onto the SPI matrix as well as the interpenetration of SPI into supramolecular HL domains. Schematic illustration of the supramolecular domain created by the aggregation of hydroxypropyl lignin, which can interpenetrate with soy protein isolate. [source] Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes of Nylon 6MACROMOLECULAR RAPID COMMUNICATIONS, Issue 2 2006Hyun Suk Kim Abstract Summary: A simple and mass-producible method was developed to densely assemble multiwalled carbon nanotubes (MWNTs) onto electrospun nylon 6 nanofibrous membranes. The process consists of dispersing the acid-treated MWNTs in surfactant solutions or organic solvents, and dipping the nanofibrous membranes in the resulting dispersion for only 60 seconds, followed by the extraction of the surfactants in pure water and drying. The conductivity of the MWNT-adsorbed nanofibrous membranes ranges from 2.2,×,10,2 to 1.5,×,10,1 S,·,cm,1, as determined by the four probe method, which implies that the MWNTs are adsorbed uniformly and densely along the nanofibrous membranes. Furthermore, the results suggest that there is a strong interaction between the acid-treated MWNTs and nylon 6. We also investigate the amount of MWNTs present in the membranes using thermogravimetric analysis. SEM images of the non-woven fibrous nylon 6 membranes after dip-coating in a dispersion of the MWNTs in surfactant-containing water. [source] |