Home About us Contact | |||
Strong Coupling Regime (strong + coupling_regime)
Selected AbstractsQuantum-Chemical Characterization of the Origin of Dipole Formation at Molecular Organic/Organic InterfacesADVANCED FUNCTIONAL MATERIALS, Issue 4 2009Igor Avilov Abstract Recent experiments have reported a vacuum level shift at the interface between organic materials due to the formation of an interface dipole layer. On the basis of quantum-chemical calculations, this paper sheds light on the factors contributing to the formation of an interface dipole between an electron donor and an electron acceptor, considering as model system a complex made of tetrathiafulvalene (TTF) as a donor and tetracyanoquinodimethane (TCNQ) as an acceptor. The results indicate that the interface dipole is governed both by charge-transfer and polarization effects and allow for disentangling of their respective contributions. Two regimes of charge transfer can be distinguished depending on the strength of the electronic coupling: a fractional charge transfer occurs in the strong coupling regime while only integer charges are transferred when the coupling is weak. The polarization contribution can be significant, even in the presence of a pronounced charge transfer between the donor and acceptor molecules. The values of ionization potential and electron affinity of the donor and acceptor molecules may experience shifts as large as several tenths of an eV at the interface with respect to the isolated compounds. [source] Spin dynamics of exciton polaritons in microcavitiesPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 11 2005I. A. Shelykh Abstract In this chapter we address a complex set of optical phenomena linked to the spin dynamics of exciton polaritons in semiconductor microcavities. When optically created, polaritons inherit the spin and dipole moment from the exciting light. Their state can be fully characterized by a so-called "pseudospin" accounting for both spin and dipole moment orientation. However, from the very beginning of their life in a microcavity, polaritons start changing their pseudospin state under effect of effective magnetic fields of different nature and due to scattering with acoustic phonons, defects, and other polaritons. This makes pseudospin dynamics of exciton polaritons rich and complex. It manifests itself in non-trivial changes in polarization of light emitted by the cavity versus time, pumping energy, pumping intensity and polarization. During the first years of theoretical research on exciton-polariton relaxation the polarization has been simply neglected. Later it has been understood that the energy and momentum-relaxation of exciton polaritons are spin-dependent. It is typically the case in the regime of stimulated scattering when the spin polarizations of initial and final polariton state have a huge effect on the scattering rate between these states. It appeared that critical conditions for polariton Bose-condensation are also polarization-dependent. In particular, the stimulation threshold (i.e. the pumping power needed to have a population exceeding 1 at the ground state of the lower polariton branch) has been experimentally shown to be lower under linear than under circular pumping. These experimental observations have stimulated the theoretical research toward understanding of mutually dependent polarization- and energy-relaxation mechanisms in microcavities. The authors of this chapter have been working on theoretical description of different specific effects of polariton spin-dynamics in microcavities for years. Here we attempted to put together all fragments and to formulate a general approach to the problem that would allow then to consider a variety of particular cases. We start from reminding the main spin-relaxation mechanisms known for free carriers and excitons. We then overview the most essential experimental results in this field before to present our original formalism which allowed us to interpret the key experimental findings. We are going to discuss only the strong coupling regime leaving aside all polarization effects in VCSELs. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Electronic transport through large quantum dots in the Kondo regimePHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 2 2003P. Stefa Abstract Conductance through a large two-level quantum dot is investigated theoretically in the strong coupling regime. In large quantum dots the separation between discrete levels becomes smaller than the level width due to strong hybridization with electrodes. In such circumstances, apart from strong electronic correlations in the quantum dot, the indirect interaction between both the spatial levels comes into play. It takes place in lateral quantum dots, where the spatial level index is not conserved during the hybridization process with electrodes. This interaction shifts the Kondo resonance peak in the density of states out of the Fermi surface and alters its intensity. This feature can be observed in the differential conductance dependence vs. bias voltage. The virtual inter-level mixing is suppressed for temperatures above the Kondo temperature of the system. The results of theoretical predictions are compared with the results of experimental conductance measurements performed on large quantum dots and some non-typical conductance features are clarified. [source] Strong exciton-light coupling in photonic crystal nanocavitiesPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 2 2005Dario Gerace Abstract The strong coupling regime between excitons in a single self-assembled InAs quantum dot and the cavity mode in a photonic-crystal structure embedded in GaAs planar waveguides is theoretically investigated. It is concluded that zero-dimensional mixed states should form when the quality factor of the cavity mode is higher than Q , 2000. The corresponding vacuum-field Rabi splitting is close to its limiting value already for Q , 10000. Results are shown for a model GaAs-based photonic crystal nanocavity, in which single quantum dot excitons are predicted to be always in the strong coupling regime if the quantum dot is placed close to the antinode position of the electric field. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |