Strong Blue Emission (strong + blue_emission)

Distribution by Scientific Domains


Selected Abstracts


The preparation of ZnGa2O4 doped with Mn-Mg and Tm for green and blue phosphors

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 1 2006
Binod Kumar Singh Non-member
Abstract Phosphor powders of zinc gallate (ZnGa2O4) with Mg and Mn for green and Tm-Mg for blue luminescence were prepared by solid state reaction method for their improved luminescent properties. Green-luminescence emitting ZnMnGa2O4 reached maximum intensity at Mn = 0.005 mol% and further improvement was achieved by the addition of Mg2+. Tm-Mg based zinc gallate phosphor exhibited a strong blue emission, centered at ,420 nm with the maximum intensity achieved for 0.003 mol% of Mg and 0.015 mol% of Tm. This study established the possibilities of controlling the luminescent characteristics of zinc gallate by adding various elements. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


High quantum yield photoluminescence of new polyamides containing oligo-PPV amino derivatives and related oligomers

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2009
Antonio Roviello
Abstract The synthesis and the chemical physical characterization of new photoluminescent (PL) chromophores and polymers are reported. Chromophores (oligo-PPV symmetric derivatives ending with amino groups) are strong blue emitters with a PL quantum yield of ,70% in dioxane solution. They have been used to prepare polyamides by reaction with aliphatic acyl dichlorides in which emitting and non emitting units are alternated. PL properties of the synthesized polyamides have been evaluated in solution and reveal a strong blue emission (PL quantum yield ,60%), To increase the solubility of these systems, oligomers have been purposely prepared and then characterized. They show a peculiar white emission when excited in DMF solution; to get insight into this interesting behavior, asymmetric monoacetylated chromophores have been prepared as model compounds for the chromophoric end groups of the polyamide chains. The emission spectra of these compounds reveal a broad excimeric yellow emission which is responsible, along with the blue emission of the inner chromophoric units, of the overall white emission of the oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2677,2689, 2009 [source]


Blue-emitting AlN:Eu2+ Powder Phosphor Prepared by Spark Plasma Sintering

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2010
Hyoung-SeoK Do
Blue-emitting AlN:Eu2+ powder phosphor was synthesized by spark plasma sintering (SPS) using AlN, Si3N4, and Eu2O3 as the starting materials, and its luminescence properties were investigated. A single-phase Eu- and Si-co-doped AlN powder was successfully fabricated by SPS in the range of 1650°,1800°C for 5 min. The AlN:Eu2+ obtained exhibited a strong blue emission at 480 nm under the excitation of ,exc=340 nm and an electron beam. The highest photoluminescence intensity was observed in the phosphor sintered at 1700°C, which was comparable to that of the phosphor prepared by gas pressure sintering at 1750°C for 4 h. [source]


Preparation, Characterization, and Photocatalytic Properties of CaNb2O6 Nanoparticles

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2009
In-Sun Cho
CaNb2O6 nanoparticles with a size range of 30,50 nm were synthesized by heat treatment at 600°C after a solvothermal process and their optical and photocatalytic properties were investigated. The prepared powders were characterized by X-ray powder diffractometer, field-emission scanning electron microscope, transmission electron microscope, UV-Vis diffuse reflectance spectroscopy, Fluorescence spectroscopy, and Raman spectroscopy. Compared with a powder of the same material prepared by a solid-state reaction (SS) method, the nanoparticles exhibited a higher Brunauer,Emmett,Teller (BET) surface area, more efficient light absorption, and enhanced photocatalytic activity for producing H2 from pure water under UV irradiation. The photoluminescence spectra revealed that a radiative recombination process is dominant in the powder prepared by the SS method (strong blue emission at 300 K) under UV light irradiation, while no obvious emission was observed in the nanoparticles. This decrease of the radiative recombination as well as the higher optical absorption ability and higher BET surface area resulting from the reduced dimensionality led to enhanced photocatalytic activity of the nanoparticles. [source]


Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
Haibo Zeng
Abstract High concentrations of defects are introduced into nanoscale ZnO through non-equilibrium processes and resultant blue emissions are comprehensively analyzed, focusing on defect origins and broad controls. Some ZnO nanoparticles exhibit very strong blue emissions, the intensity of which first increase and then decrease with annealing. These visible emissions exhibit strong and interesting excitation dependences: 1) the optimal excitation energy for blue emissions is near the bandgap energy, but the effective excitation can obviously be lower, even 420,nm (2.95,eV,<,Eg,=,3.26,eV); in contrast, green emissions can be excited only by energies larger than the bandgap energy; and, 2) there are several fixed emitting wavelengths at 415, 440, 455 and 488,nm in the blue wave band, which exhibit considerable stability in different excitation and annealing conditions. Mechanisms for blue emissions from ZnO are proposed with interstitial-zinc-related defect levels as initial states. EPR spectra reveal the predominance of interstitial zinc in as-prepared samples, and the evolutions of coexisting interstitial zinc and oxygen vacancies with annealing. Furthermore, good controllability of visible emissions is achieved, including the co-emission of blue and green emissions and peak adjustment from blue to yellow. [source]