Strong Absorption (strong + absorption)

Distribution by Scientific Domains


Selected Abstracts


Spectrally based remote sensing of river bathymetry

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2009
Carl J. Legleiter
Abstract This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of a simple, ratio-based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing the accuracy of spectrally based depth retrieval under field conditions via ground-based reflectance measurements; and (4) producing bathymetric maps for a pair of gravel-bed rivers from hyperspectral image data. Consideration of the relative magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth retrieval is appropriate: the remotely sensed signal must be dominated by bottom-reflected radiance. We developed a simple algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is valid and which yield strong, linear relationships between an image-derived quantity X and flow depth d. OBRA of simulated spectra indicated that water column optical properties were accounted for by a shorter-wavelength numerator band sensitive to scattering by suspended sediment while depth information was provided by a longer-wavelength denominator band subject to strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792 to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A New Donor,Acceptor,Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility,

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2007
A. Gadisa
Abstract A new alternating polyfluorene copolymer poly[2,7-(9,9-dioctylfluoren)- alt -5,5-(5,,8,-di-2-thienyl-(2,,3,-bis-(3,,-octyloxyphenyl)-quinoxaline))] (APFO-15), which has electron donor,acceptor,donor units in between the fluorene units, is synthesized and characterized. This polymer has a strong absorption and emission in the visible range of the solar spectrum. Its electroluminescence and photoluminescence emissions extend from about 560 to 900 nm. Moreover, solar cells with efficiencies in excess of 3.5,% have been realized from blends of APFO-15 and an electron acceptor molecule, a methanofullerene [6,6]-phenyl-C61 -butyric acid methyl ester (PCBM). It has also been observed that electron and hole transport is balanced both in the pure polymer phase and in polymer/PCBM bulk heterojunction films, which makes this material quite attractive for applications in opto-electronic devices. [source]


Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths,

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2006
V. Bastys
Abstract Silver nanoprisms with strong absorption in the near-IR have been synthesized using a modification of the photoinduced method by illuminating preformed silver seeds under different illumination conditions. Low-intensity light-emitting diodes and white light combined with different color filters are used as light sources. The lateral dimensions of the nanoprisms are found to be correlated in a quasilinear fashion with the emission wavelength and the position of the main in-plane dipole plasmon band. The structural characterization of the Ag nanoparticles, carried out using scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and electron diffraction, reveal that the particles are flat and have a single-crystal face-centered-cubic structure. Time-resolved studies suggest that the nanoprisms are formed by steady consumption of the original Ag seeds with little variation of the aspect ratio after a short induction time. [source]


Direct laser desorption/ionization time-of-flight mass spectrometry of conjugated polymers

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2007
Zhun Ma
Abstract Two conjugated polymers (CPs), poly(9,9-dioctylfluorene) (PF) and poly(3-octylthiophene) (PT) were analyzed by direct laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF MS). Because of their strong absorption near the wavelength of the laser (337 nm), easy and transient energy transfer properties and sufficient thermal stability, CPs can be desorbed and ionized directly without a matrix. For comparison, these two polymers were also analyzed using matrix-assisted laser desorption/ionization (MALDI)-ToF MS in the positive reflectron mode. The results revealed that they are very similar in terms of quality and resolution. All results demonstrate that LDI-ToF MS is an alternative method for the mass characterization of some conjugated systems, thereby simplifying the process of sample preparation and result analysis. Copyright © 2006 John Wiley & Sons, Ltd. [source]


1,5-Diphenyl-1,4-diyn-3-one: A highly efficient photoinitiator

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2005
Robert Liska
Abstract In a continuation of our research on new chromophores for photoinitiators (PIs), we investigated a triple-bond-containing benzophenone derivative. 1,5-Diphenyl-1,4-pentadiyn-3-one (2) was prepared from phenylacetylene and ethyl formate by a one-pot reaction. Differential scanning photocalorimetry experiments in lauryl acrylate of 2 showed surprisingly high activity for the double-bond conversion and rate of polymerization at the lowest PI concentrations and even without any coinitiator. By the application of monomers with abstractable hydrogens, significant improvement in the photoreactivity was observed. Ultraviolet,visible spectroscopy revealed strong absorption up to 350 nm. Steady-state photolysis experiments proved that the photochemistry of this compound was faster than that of benzophenone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 101,111, 2005 [source]


The extraordinary radio galaxy MRC B1221,423: probing deeper at radio and optical wavelengths

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
Helen M. Johnston
ABSTRACT We present optical spectra and high-resolution multiwavelength radio observations of the compact steep-spectrum radio source MRC B1221,423 (z= 0.1706). MRC B1221,423 is a very young (,105 yr), powerful radio source which is undergoing a tidal interaction with a companion galaxy. We find strong evidence of interaction between the active galactic nucleus (AGN) and its environment. The radio morphology is highly distorted, showing a dramatic interaction between the radio jet and the host galaxy, with the jet being turned almost back on itself. H i observations show strong absorption against the nucleus at an infall velocity of ,250 km s,1 compared to the stellar velocity, as well as a second, broader component which may represent gas falling into the nucleus. Optical spectra show that star formation is taking place across the whole system. Broad optical emission lines in the nucleus show evidence of outflow. Our observations confirm that MRC B1221,423 is a young radio source in a gas-rich nuclear environment, and that there was a time delay of a few times 100 Myr between the onset of star formation and the triggering of the AGN. [source]


Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures

CHEMISTRY - A EUROPEAN JOURNAL, Issue 2 2010
Peng Wang
Abstract By means of a simple ion-exchange process (using different precursors) and a light-induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self-assembled structures,including microrods, irregular balls, and hollow spheres,have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV-visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2,mol,%. All the catalysts show strong absorption in the visible-light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail. [source]


Curing of diglycidyl ether of bisphenol-A epoxy resin using a poly(aryl ether ketone) bearing pendant carboxyl groups as macromolecular curing agent

POLYMER INTERNATIONAL, Issue 8 2009
Fuhua Liu
Abstract BACKGROUND: Reactive thermoplastics have received increasing attention in the field of epoxy resin toughening. This paper presents the first report of using a novel polyaryletherketone bearing one pendant carboxyl group per repeat unit to cure the diglycidyl ether of bisphenol-A epoxy resin (DGEBA). The curing reactions of DGEBA/PEK-L mixtures of various molar ratios and with different catalysts were investigated by means of dynamic differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy methods. RESULTS: FTIR results for the DGEBA/PEK-L system before curing and after curing at 135 °C for different times demonstrated that the carboxyl groups of PEK-L were indeed involved in the curing reaction to form a crosslinked network, as evidenced by the marked decreased peak intensities of the carboxyl group at 1705 cm,1 and the epoxy group at 915 cm,1 as well as the newly emerged strong absorptions of ester bonds at 1721 cm,1 and hydroxyl groups at 3447 cm,1. Curing kinetic analysis showed that the value of the activation energy (Ea) was the highest at the beginning of curing, followed by a decrease with increasing conversion (,), which was attributed to the autocatalytic effect of hydroxyls generated in the curing reaction. CONCLUSION: The pendant carboxyl groups in PEK-L can react with epoxy groups of DGEBA during thermal curing, and covalently participate in the crosslinking network. PEK-L is thus expected to significantly improve the fracture toughness of DGEBA epoxy resin. Copyright © 2009 Society of Chemical Industry [source]