Stromal Fibroblasts (stromal + fibroblast)

Distribution by Scientific Domains


Selected Abstracts


Increased Glycosaminoglycans Production in Sclerosing Basal Cell Carcinoma-Derived Fibroblasts and Stimulation of Normal Skin Fibroblast Glycosaminoglycans Production by a Cytokine-Derived from Sclerosing Basal Cell Carcinoma

DERMATOLOGIC SURGERY, Issue 11 2000
Ronald L. Moy MD
Sclerosing basal cell carcinoma (S-BCC) is characterized by an abundant stroma. There is evidence that some tumor cells secrete cytokines that are mitogenic for stromal fibroblasts (FBs). From this study we report increased glycosaminoglycan (GAG) production by cultures of S-BCC FBs in comparison to cultures of nodular BCC (N-BCC) FBs and normal skin FBs. GAG production was measured by cetylpyridinium chloride precipitation of incorporated [3H]-glucosamine. The sclerosing BCC FBs demonstrated a significant increase in production of GAG over control FBs (P < .001) and over N-BCC FBs (P < .001). Values reported as a mean percentage ± SEM for GAG production by S-BCC over control normal skin FBs are 359 ± 28 and over N-BCC FBs are 266 ± 27. In additional experiments, cell extract dilutions from S-BCC tumor, normal dermis, and normal epidermis were incubated with cultures of normal skin FBs. S-BCC-conditioned media was also incubated with normal FBs and GAG production was measured. For both S-BCC extracts and conditioned media, a dose response curve was established showing increased GAG production by normal FBs in relation to increasing the concentration of S-BCC extract or conditioned media. When S-BCC extract was added to normal FBs there was increased GAG production in comparison to normal FBs incubated with dermal or epidermal extracts (P < .001) for both. Two growth factors, transforming growth factor-, (TGF-,) and platelet-derived growth factor (PDGF), already known to be mitogenic for FBs, were incubated with N-BCC and normal FBs in an effort to elucidate the potential cytokine(s) released by S-BCC, causing increased GAG production by surrounding FBs. Neither of these cytokines proved to be effective in promoting a significant increase in GAG production. Our findings support the hypothesis that BCCs release factors that alter stromal FB production of GAG. [source]


Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2010
Da-Woon Jung
Abstract Recent studies have shown that stromal fibroblasts have a more profound influence on the initiation and progression of carcinoma than was previously appreciated. This study aimed at investigating the reciprocal relationship between cancer cells and their associated fibroblasts at both the molecular and cellular level in oral squamous cell carcinoma (OSCC). To identify key molecular regulators expressed by carcinoma-associated fibroblasts (CAF) that promote cancer cell invasion, microarrays were performed by comparing cocultured OSCC cells and CAF with monoculture controls. Microarray and real-time PCR analysis identified marked upregulation of the chemokine (C-C motif) ligand 7 (CCL7) in cocultured CAF. ELISA showed an elevated level of CCL7 secretion from CAF stimulated by coculture with OSCC cells. CCL7 promoted the invasion and migration of OSCC cells, and the invasiveness was inhibited by treatment with CCL7 neutralizing antibody. OSCC cells were shown to express CCR1, CCR2 and CCR3, receptors for CCL7, by RT-PCR. In addition, treatment with anti-CCR1 or anti-CCR3 antibody inhibited CCL7-induced OSCC cell migration, implicating that CCL7 promotes cancer cell migration through CCR1 and CCR3 on OSCC cells. Cytokine antibody array analysis of the supernatant from OSCC cell culture revealed that interleukin-1, was an inducer of CCL7 secretion by CAF. This study confirms the reciprocal relationship of the molecular crosstalk regulating the invasion of OSCC and describes new potential targets for future therapy. [source]


P53 mutations in stromal fibroblasts sensitize tumors against chemotherapy

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2008
Daniel Lafkas
Abstract The efficacy of chemotherapy is usually viewed as the outcome of cancer-cell-autonomous processes while the contribution of stroma is being overseen. Here we show that p53 mutations in stromal fibroblasts, a genetic lesion that is detectable in primary breast, prostate and probably other cancers, while they accelerate tumorigenesis they also sensitize tumours against conventional chemotherapy by doxorubicin and cis -platinum. The mechanism by which p53 of stromal fibroblasts affects the response of a tumour against chemotherapy is likely to involve the induction of senescence in the fibroblasts which in turns results in the production of growth factors acting onto the cancer cells by paracrine mechanisms. Our findings identify stromal fibroblasts as important modulators of the efficacy of anticancer therapy. © 2008 Wiley-Liss, Inc. [source]


Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1 2002
Jack Lawler
Thrombospondin-1 (TSP-1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP-1. However, the TSP-1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP-1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor , in those tumor cells that are responsive to TGF,. In this review, the molecular basis for the role of TSP-1 in the inhibition of tumor growth and angiogenesis is summarized. [source]


Complete replication of human cytomegalovirus in explants of first trimester human placenta

JOURNAL OF MEDICAL VIROLOGY, Issue 4 2001
Liliana Gabrielli
Abstract Tissue integrity and viability of first trimester placenta explants were obtained in culture for 3 weeks. Explants were infected with human cytomegalovirus (HCMV), several cycles of HCMV replication were obtained and the progression of the infection was observed within a tissue that maintains its normal cellular organization. In agreement with recent clinical data, 3 weeks were necessary for the virus to colonize the placenta fully. Complete HCMV replication was observed in trophoblasts, followed by subsequent transmission of the infection to the stromal fibroblasts and fetal endothelial capillary cells. Viral DNA replication was monitored and the production of infectious viral progeny documented. J. Med. Virol. 64:499,504, 2001. © 2001 Wiley-Liss, Inc. [source]


New prognostic histological parameter of invasive ductal carcinoma of the breast: Clinicopathological significance of fibrotic focus

PATHOLOGY INTERNATIONAL, Issue 4 2000
Takahiro Hasebe
Immunohistochemistry, DNA ploidy analysis and molecular genetics have made it possible to predict the outcome of breast cancer more precisely than routine histological examination alone. However, in routine practice, it is difficult to incorporate these methodologies in all cases. If certain histological parameters can accurately predict the outcome of patients with breast cancer, they would be more practical for routine use. We showed that the presence of fibrotic focus (FF) in invasive ductal carcinoma (IDC) is closely associated with c-erbB-2 or p53 protein expression, high proliferative activity, and high angiogenesis of the tumors. Furthermore, multivariate analyses with well-known prognostic parameters for IDC demonstrated that the presence of FF is the most useful independent parameter to predict IDC patient outcome. In addition, our data suggested that the interaction between tumor cells and stromal fibroblasts may play an important role in the formation of FF in IDC based on growth factor and growth factor receptor protein expression in the tumor cells and fibroblasts forming FF. Based on the results of our clinicopathological studies, we propose a new prognostic classification scheme for the prediction of IDC patient outcome, which consists of FF, nuclear atypia, and fat invasion. This classification has superior predicting power to existing prognostic classifications. [source]


Serum autoantibody to sideroflexin 3 as a novel tumor marker for oral squamous cell carcinoma

PROTEOMICS - CLINICAL APPLICATIONS, Issue 4 2008
Ryuichi Murase
Abstract The purpose of this study is to establish a tumor marker that can be applied for the early detection and follow-up of oral cancer patients. Employing the proteomic approach using MALDI TOF-MS, 2-DE, patient's sera and culturing cell lines, the serum autoantibodies (autoAbs) were screened and the serum levels were estimated by ELISA. Targeting the tumor cell invasion into the surrounding stromal tissues, MRC-5 human fibroblasts were employed as the target cells and a mitochondrial membrane protein, sideroflexin 3 (SFXN3), was identified. The serum anti-SFXN3-autoAb levels elevated in patients with the oral squamous cell carcinoma significantly: with 77% sensitivity and 89% specificity against control samples. The serum anti-SFXN3-autoAb levels were mildly correlated with the primary tumor sizes, however, the levels were slightly highly elevated in T1 early cancer. An immunohistochemical analysis revealed that the SFXN3 protein is expressed in the stromal fibroblasts between the caner nests and also in the basal layer of the squamous epithelium. Changes in the serum anti-SFXN3-autoAb levels after therapy correlated with the clinical tumor burden. These findings demonstrated that the serum anti-SFXN3-autoAb is worthy of clinical evaluation as a potentially of the novel tumor maker for the early detection of oral squamous cell carcinoma. [source]


ORIGINAL ARTICLE: Keratinocyte Growth Factor Stimulates Macrophage Inflammatory Protein 3, and Keratinocyte-derived Chemokine Secretion by Mouse Uterine Epithelial Cells

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2010
Severina N. Haddad
Citation Haddad SN, Wira CR. Keratinocyte growth factor stimulates macrophage inflammatory protein 3, and keratinocyte-derived chemokine secretion by mouse uterine epithelial cells. Am J Reprod Immunol 2010; 64: 197,211 Problem, Communication between uterine epithelial cells and the underlying stromal fibroblasts is critical for proper endometrial function. Stromal fibroblast-derived growth factors have been shown to regulate epithelial immune functions. The purpose of this study was to determine whether keratinocyte growth factor (KGF) regulates uterine epithelial cell chemokine and antimicrobial secretion. Method of study, Uterine epithelial cells were isolated from Balb/c mice and cultured in either 96-well plates or transwell inserts. Epithelial cells were treated with KGF, epidermal growth factor (EGF), or hepatocyte growth factor (HGF). Macrophage inflammatory protein 3, (MIP3,) and keratinocyte-derived chemokine (KC) levels were measured by ELISA. Results, Keratinocyte growth factor stimulated the secretion of MIP3, and KC. The effects on MIP3, by KGF were specific because EGF and HGF had no effect. In contrast, KGF, EGF, and HGF had similar effects on KC. Furthermore, KGF administered to the apical side of epithelial cells had no effect on MIP3, or KC secretion, indicating that the KGF receptor is located on the basolateral surface of uterine epithelial cells. Conclusion, We demonstrate that KGF plays a role in uterine epithelial cell secretion of MIP3, and KC, key immune mediators involved in the protection of mucosal surfaces in the female reproductive tract. [source]