Home About us Contact | |||
Stripping Voltammetry (stripping + voltammetry)
Kinds of Stripping Voltammetry Selected AbstractsDetermination of Diazepam, Temazepam and Oxazepam at the Lead Film Electrode by Adsorptive Cathodic Stripping VoltammetryELECTROANALYSIS, Issue 17-18 2010Katarzyna Tyszczuk Abstract The determination of psychoactive 1,4-benzodiazepine drugs is of relevant interest in clinical, biomedical areas. Therefore a highly sensitive and simple voltammetric method for the determination of temazepam, diazepam and oxazepam at an in situ plated lead film electrode was developed. The method was successfully applied to the determination of diazepam and temazepam in pharmaceutical formulations with minimum sample manipulation and oxazepam in human urine samples without any separation steps. The determinations of oxazepam in human urine samples were performed in a flow system. Therefore a previous extraction procedure was not necessary to separate the active compound before its determination. [source] Electrode Modified with Cobalt Cyclohexylbutyrate for the Determination of Low Molecular Weight Thiol Group Bearing Compounds Using Catalytic Stripping VoltammetryELECTROANALYSIS, Issue 3 2010Petr Jakubec Abstract Glassy carbon electrode, modified with cobalt(II) cyclohexylbutyrate monohydrate immobilized in polystyrene matrix is usable for determination of thiol group bearing compounds both in oxidized and reduced forms using catalytic stripping voltammetry. The measurements are carried out in acetate buffer (pH,4.3) containing Tween 40. After the accumulation step at ,850,mV vs. Ag/AgCl a peak at ,170,mV is observed on linear sweep voltammogram, the height of which is proportional to the concentration of added thiol. Addition of carbon nanotubes into polystyrene film enhances the sensitivity of the modified electrode. The detection limit is 1×10,6,mol dm,3 for all studied thiols. The electrode can be regenerated by exposing it to the potential between 300,600,mV. [source] The Electrochemical Behavior of Nitrazepam at a Screen-Printed Carbon Electrode and Its Determination in Beverages by Adsorptive Stripping VoltammetryELECTROANALYSIS, Issue 19 2009Natasha Abstract The cyclic voltammetric behavior of nitrazepam was investigated at screen-printed carbon electrodes over the range ,1.5,V to +1.5,V. Two reduction peaks were observable on the negative scan, at ,0.7,V, and ,1.2,V using pH,6 buffer. On the return scan a single oxidation peak was obtained at ,0.05,V. For quantitative analysis of beverages, we developed an anodic adsorptive stripping voltammetric method which required only dilution with buffer. The identification of nitrazepam and flunitrazepam could be achieved using cyclic voltammetry. [source] Renewable Ceramic (TiN) Ring Electrode in Stripping Voltammetry.ELECTROANALYSIS, Issue 16 2009Determination of Pb(II) Without Removal of Oxygen Abstract Characteristic features of the process of Pb(II) reduction and oxidation at a renewable ceramic ring electrode (RCRE) were studied by stripping voltammetry. The main constituents of the RCRE are: a specially constructed TiN ring electrode, a silver sheet used as silver counter/quasi-reference electrode and a silicon O-ring are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RCRE body. The optimal measurement conditions, composition of supporting electrolyte and procedures of the electrode activation were selected. The measurements were carried out from nondeaerated solutions. As shown on selected examples, RCRE exhibits good performance in underpotential deposition stripping voltammetry (UPD-SV) applied for the determination of lead(II) in synthetic solutions with and without surfactants and in certified reference materials. The peak current is proportional to the concentration of lead(II) over the range 2×10,9,1×10,7,mol L,1, with a 3, detection limit of 1×10,9,mol L,1 with an accumulation time of 30,s. The obtained results showed good reproducibility, (RSD=2,5%; n=5) and reliability. [source] Cathodic Stripping Voltammetry of Uracil.ELECTROANALYSIS, Issue 1 2009Experimental, Theoretical Study Under Conditions of Square-Wave Voltammetry Abstract The electrode mechanism of uracil at a hanging mercury drop electrode (HMDE) is studied under cathodic stripping square-wave voltammetric mode owing to the cathodic dissolution of a sparingly soluble compound formed between the electrode material and uracil. The experimental results can be partly explained in the light of the recent theory for cathodic stripping processes of insoluble salts under conditions of square-wave voltammetry. It is established that the electrode reaction is complicated by attractive interactions between the deposited species of the insoluble compound. To elucidate the electrode mechanism completely a novel theoretical model is developed considering adsorption of the reacting analyte and lateral interactions between species of the insoluble compound. With the help of numerical simulations the effect of interactions is studied in detail, emphasizing the properties of the response that can be used as diagnostic criteria for recognition of the type of interaction forces. Theoretically predicted voltammetric properties agree well with the experimental results enabling clarification of the complex electrode mechanism of uracil at HMDE. [source] Simultaneous Quantitative Determination of Cadmium, Lead, and Copper on Carbon-Ink Screen-Printed Electrodes by Differential Pulse Anodic Stripping Voltammetry and Partial Least Squares RegressionELECTROANALYSIS, Issue 23 2008Michael Cauchi Abstract Water is a vital commodity for every living entity on the planet. However, water resources are threatened by various sources of contamination from pesticides, hydrocarbons and heavy metals. This has resulted in the development of concepts and technologies to create a basis for provision of safe and high quality drinking water. This paper focuses on the simultaneous quantitative determination of three common contaminants, the heavy metals cadmium, lead and copper. Multivariate calibration was applied to voltammograms acquired on in-house printed carbon-ink screen-printed electrodes by the highly sensitive electrochemical method of differential pulse anodic stripping voltammetry (DPASV). The statistically inspired modification of partial least squares (SIMPLS) algorithm was employed to effect the multivariate calibration. The application of data pretreatment techniques involving range-scaling, mean-centering, weighting of variables and the effects of peak realignment are also investigated. It was found that peak realignment in conjunction with weighting and SIMPLS led to the better overall root mean square error of prediction (RMSEP) value. This work represents significant progress in the development of multivariate calibration tools in conjunction with analytical techniques for water quality determination. It is the first time that multivariate calibration has been performed on DPASV voltammograms acquired on carbon-ink screen-printed electrodes. [source] Simultaneous Determination of Nickel and Cadmium by Adsorptive Stripping VoltammetryELECTROANALYSIS, Issue 12 2008B. Gholivand Abstract A sensitive and fast method for the simultaneous determination of trace amounts of nickel and cadmium in real samples has been described using differential pulse adsorptive stripping voltammetry (DPASV) by adsorptive accumulation of the N,N,-bis(salicylaldehydo)4-carboxyphenylenediamine (BSCPDA),complex on the hanging mercury drop electrode (HMDE). As supporting electrolyte 0.02,mol L,1 ammonia buffers containing ligand has been used. Optimal analytical conditions were found to be: BSCPDA concentration of 42,,M, pH,9.6 and adsorption potential at ,50,mV versus Ag/AgCl. With an accumulation time of 20,s, the peaks current are proportional to the concentration of nickel and cadmium over the 1,180, and 0.5,200,ng mL,1 with detection limits of 0.06 and 0.03,ng mL,1 respectively. The sensitivity of method for determination of nickel and cadmium were obtained 0.54 and 0.98,nA mL ng,1, respectively. The procedure was applied to simultaneous determination of nickel and cadmium in some real and synthetic artificial samples with satisfactory results. [source] Electrochemical Detection of Arsenic(III) in the Presence of Dissolved Organic Matter (DOM) by Adsorptive Square-Wave Cathodic Stripping Voltammetry (Ad-SWCSV)ELECTROANALYSIS, Issue 4 2008Tsanangurayi Tongesayi Abstract This study has demonstrated that As(III) can be electrochemically detected and quantified in the presence of fulvic acid (FA) and dissolved organic matter (DOM). This eliminates the need to remove DOM prior to measurement of As(III) in environmental samples. Apart from reducing analysis time and the cost of the analysis, this could be potentially useful for the development of electrochemical methods for the detection and measurement of As(III) onsite. Both synthetic samples in which FA was added and a real sample with 22.16,mg/L total organic carbon (TOC) were analyzed. [source] DNA Determination in the Presence of Copper in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film ElectrodeELECTROANALYSIS, Issue 11 2007Augusto, Mardini Farias, Percio Abstract A stripping method for the determination of single-stranded DNA in presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of adenine (from acid-treated DNA) at thin-film mercury electrode followed by linear scan voltammetry measurement of the surface species. Optimum experimental conditions were found to be the use of a 5.0×10,3,M NaOH solution, an accumulation potential of ,0.40,V and a scan rate of 200,mV s,1. The response of adenine,copper is linear over the concentration range 50,250,ppb. For an accumulation time of 15,minutes, the detection limit was found to be 4,ppb. The more convenient relation to measuring the ssDNA in presence of metals and nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of adenosine-triphosphate (ATP) and amino acids. [source] Determination of Trace Amounts of Copper in Tap Water Samples with a Calix[4]arene Modified Carbon Paste Electrode by Differential Pulse Anodic Stripping VoltammetryELECTROANALYSIS, Issue 10 2007Çelik Canpolat Abstract A calix[4]arene modified carbon paste electrode was used for trace determination of copper. The study of the preconcentration of copper as well as the other heavy metal ions at the modified electrode, with subsequent measurement by differential pulse anodic stripping voltammetry (DPASV), indicates the efficient open-circuit accumulation of the analytes onto the electrode. Many parameters such as the composition of the paste, pH, preconcentration time and stirring rate influence the response of the measurement. The procedure was optimized for copper determination. For a 10-minute preconcentration time at pH,6.5,7.5, the detection limit (LOD) was 1.1,,g L,1. The optimized method was successfully applied to the determination of copper in tap water sample by means of standard addition procedure. The copper content of the sample was comparable with the result obtained with AAS method. [source] Enhanced Resolution of Copper and Bismuth by Addition of Gallium in Anodic Stripping Voltammetry with the Bismuth Film ElectrodeELECTROANALYSIS, Issue 24 2006Chad Prior Abstract This paper presents the enhanced analysis of copper on a bismuth electrode upon addition of gallium(III). The presence of gallium alleviates the problems of overlapping stripping signals usually observed between copper and bismuth when using the Bismuth Film Electrode. In addition, it has been found that the presence of gallium improves the reproducibility of the bismuth stripping signal. Simultaneous deposition of copper and bismuth at ,1500,mV for 2,minutes in a supporting electrolyte composed of 0.1,M pH,4.75 acetate buffer with 250,,g L,1 gallium yields well resolved copper and bismuth signals when analyzed with square-wave anodic stripping voltammetry. Simultaneous analysis of copper and lead yielded linear calibration plots in the range 10 to 100,,g L,1 with regression coefficients of 0.997 and 0.994 respectively. The theoretical detection limit for copper was calculated to be 4.98,,g L,1 utilizing a 2,minutes deposition time. The relative standard deviation for a copper concentration of 50,,g L,1 was 1.6% (n=10). [source] Highly Sensitive and Selective Measurement of Bismuth in Seawater and Drug with 1,2-Phenylenedioxydiacetic Acid by Cathodic Adsorptive Stripping VoltammetryELECTROANALYSIS, Issue 7 2006B. Gholivand Abstract A new method is presented for determination of bismuth based on cathodic adsorptive stripping of complex bismuth with 1,2-phenylenedioxydiacetic acid (PDA) at a hanging mercury drop electrode (HMDE). The effect of various parameters such as pH, concentration of ligand, accumulation potential and accumulation time on the selectivity and sensitivity were studied. The optimum conditions for determination of bismuth include nitric acid concentration 0.01,M, 8.0×10,4,M PDA and accumulation time 120,s, accumulation potential of ,200,mV. The limits of detection are 0.25 and 0.05,nM, and responses are linear 1,1000 and 0.1,400,nM at tacc of 60 and 120,s, respectively. Many common anions and cations do not interfere in the determination of bismuth. The method was applied to the determination of bismuth in some real samples such as sea , and spring water and drug. [source] Direct Simultaneous Determination of Cu, Ni and V in Seawater Using Adsorptive Cathodic Stripping Voltammetry with Mixed LigandsELECTROANALYSIS, Issue 10 2005A. Cobelo-García Abstract An analytical procedure is proposed for the direct simultaneous determination in a single scan of Cu, Ni and V in seawater by means of adsorptive cathodic stripping voltammetry (ACSV) with mixed ligands (DMG and catechol). Optimum conditions for the determination of these three elements were studied. Detection limits of the technique depended upon the reproducibility of the procedura blank, and were found to be 0.5,nM for Cu, 0.4,nM for Ni and 0.3,nM for V. The method is suitable for the analysis of estuarine, coastal and open-ocean waters, and especially to study the metal contamination in areas subject to oil spill events. [source] Determination of Lead and Cadmium at Silver Electrode by Subtractive Anodic Stripping Voltammetry in Plant Materials Containing TlELECTROANALYSIS, Issue 9 2005Beata Krasnod, bska-Ostr Abstract Lead and cadmium have been determined by the subtractive anodic stripping voltammetry using the square-wave mode at a silver electrode without removal of oxygen. The samples containing large amount of thallium were collected from a highly contaminated region. The presence of thallium strongly affects the peak shape of Cd. The plant material digestion was performed with HNO3/HClO4 mixture using pressurised microwave decomposition. The proposed method used for the lead determination was validated by the inter-method comparison (ICP-MS). The cadmium determination was validated using certified reference material. The results obtained, supported by statistical tests, demonstrated the usefulness of the method for the lead determination in samples containing large amounts of Cd and Tl. It is important to note that Cd can only be quantified when the thallium concentration is much lower than that of cadmium. [source] Determination of Platinum with Thiosemicarbazide by Catalytic Adsorptive Stripping Voltammetry (AdSV)ELECTROANALYSIS, Issue 4 2005Sylwester Huszal Abstract This work describes a very sensitive and selective voltammetric procedure for the determination of platinum. Instead of commonly used hydrazine, thiosemicarbazide as a component of supporting electrolyte was applied. The method is based on adsorption of platinum-thiosemicarbazone complex, formed in situ in voltammetric cell from thiosemicarbazide and formaldehyde, coupled with a hydrogen catalytic reaction at a hanging mercury drop electrode. The linear relation between platinum concentration and height of analytical signal was observed up to 1.5×10,9,mol,L,1 with the detection limit calculated as 1.5×10,13,mol,L,1 (3,s of the blank) after 50,s of accumulation time. The effect of various interferences from other ions was studied. Described method was applied for platinum determination in hydroponically cultivated plants after microwave decomposition. [source] Fast Mapping of Gunshot Residues by Batch Injection Analysis with Anodic Stripping Voltammetry of Lead at the Hanging Mercury Drop ElectrodeELECTROANALYSIS, Issue 2 2005Adriana De, Donato Abstract The forensic analysis of lead in gunshot residues (GSR) sampled on the hands of potential shooters is rendered faster, simpler and less expensive by a new batch injection analysis (BIA) method, based on differential pulse anodic stripping voltammetry (DPASV). A simple "J" shaped adaptor was designed to direct the flux of the analyte injected with a micropipettor onto the hanging mercury drop electrode of any commercial electrode stand. Sampling methods for GSR were compared and lifting with adhesive tape was elected for field use. The tapes are glued on polyethylene screens and stored in capped vials. Sampling with multiple strips provides coarse mapping of the distribution of lead on the shooter's hands. After a dissolution/extraction step with chloroform/aqueous 0.10,mol,L,1 HCl, 100,,L of the aqueous phase are injected during 25,s for accumulation of lead on the HMDE at ,0.60,V (vs. Ag/AgCl). A detection limit of 20,ng/mL of Pb(II), outreaching for GSR analysis, is reached without oxygen removal, at a frequency of 20 injections per hour. Results for sequences of shootings with a revolver and a pistol are presented. [source] Trace Determination of Chromium by Square-Wave Adsorptive Stripping Voltammetry on Bismuth Film ElectrodesELECTROANALYSIS, Issue 21 2004Eleni Chatzitheodorou Abstract This works reports the use of adsorptive stripping voltammetry (AdSV) for the trace determination of chromium on a rotating-disk bismuth-film electrode (BFE). During the reductive accumulation step, all the chromium species in the sample were reduced to Cr(III) which was complexed with cupferron and the complex was accumulated by adsorption on the surface of a preplated BFE. The stripping step was carried out by using a square-wave (SW) potential-time voltammetric signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements in the presence of dissolved oxygen. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3, limit of detection for chromium was 100,ng L,1 (for 120,s of preconcentration) and the relative standard deviation was 3.6% at the 2,,g L,1 level (n=8). Finally, the method was applied to the determination of chromium in real samples with satisfactory results. [source] Adsorptive Stripping Voltammetry of Rifamycins at Unmodified and Surfactant-Modified Carbon Paste ElectrodesELECTROANALYSIS, Issue 20 2004Sonia Gutiérrez-Fernández Abstract The electrochemical behavior of the antibiotics rifampicin and rifamycin SV is investigated by cyclic voltammetry at carbon paste and in situ surfactant modified carbon paste electrodes. Both antibiotics adsorb on the unmodified electrodes and show a reversible redox process due to the oxidation of the 6,9-dihydroxynaphthalene moiety to the corresponding naphthoquinone. This process is used as analytical signal for developing adsorptive voltammetric methods for the determination of the antibiotics. Experimental parameters, such as pH of the supporting electrolyte, accumulation potential and time are optimized. After accumulation from acidic solutions (0.1,M KCl pH 2 or HCl 0.2,M) at ,0.1 or 0,V for 3,min, the differential pulse oxidation peak current changes linearly with the antibiotic concentration in the range 3.5×10,10,M ,5.4×10,9,M or 5×10,11,M ,1.0×10,9,M for rifampicin and rifamycin SV, respectively. Rifamycin SV is not accumulated on carbon paste electrodes modified in situ with the anionic surfactant sodium dodecyl sulfate, whereas rifampicin is readily accumulated on this modified electrodes resulting in a signal enhancement and allowing rifampicin determinations without interference from rifamycin SV. On the other hand, selective determination of rifamycin SV in the presence of rifampicin is achieved by using carbon paste electrodes in situ modified with the cationic surfactant cetyltrimethylammonium chloride. [source] A Study of the Determination of Cu(II) by Anodic Stripping Voltammetry on a Novel Nylon/Carbon Fiber ElectrodeELECTROANALYSIS, Issue 7 2004A. Mylonakis Abstract In this work we report a new electrode material formed by injection-moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury-free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8,,g L,1 to 30,mg,L,1 (with deposition times ranging from 30,s to 10,min) with a relative standard deviation of 2.2% (at the 0.5,mg,L,1 level) and a limit of detection of 8,,g L,1 Cu(II) for 10,min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap-water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively [source] Characteristics of Subtractive Anodic Stripping Voltammetry of Lead, Cadmium and Thallium at Silver-Gold Alloy ElectrodesELECTROANALYSIS, Issue 17 2003Y. Bonfil Abstract Silver-gold alloy electrodes have been studied for the purpose of the quantitative determination of heavy metals by subtractive anodic stripping voltammetry, (SASV). The results have been compared with those obtained with the silver and gold electrodes. The 50/50 a/o Ag/Au alloy electrode is the most suitable for quantifying thallium in the presence of lead and cadmium. The separation of its peak from those of lead and cadmium is 200,mV, which is about twice the separation obtained on the pure metal electrodes and is also better than on mercury. The silver electrode is suitable for the simultaneous determination of thallium, lead and cadmium. The peaks of lead and cadmium overlap on the 50/50 alloy. Pure silver or pure gold can be used for simultaneous quantification of these two metals. The use of gold for quantifying lead and cadmium is more limited because the peak potential of cadmium is shifted in the negative direction as its concentration increases and at [Cd2+]>200,nM, the two peaks merge. SASV enables correction for background currents and is of utmost importance for obtaining well-defined peaks. The peaks of lead, cadmium and thallium appear over a relatively narrow potential range (ca. 200,mV) on all the electrodes presented in this work. For this reason, the quantifying of a peak is based on the derivative at the inflection point of only one of its branches (ascending or descending). All SASV measurements were carried out without removal of oxygen. [source] Determination of Ytterbium Traces by Cathodic Stripping VoltammetryELECTROANALYSIS, Issue 1 2003Marina Mlakar Abstract The method of ytterbium(III) trace concentration in the presence of 2-thenoyltrifluoroacetone (TTA) and polyethyleneglycol (PEG) in ammonium chloride is described. The adsorption was performed at the HMDE at ,1.0,V using linear scan voltammetry and square-wave voltammetry. The relationship between properties of the SW response of the mixed ligand complex and parameters of a charge transfer were analyzed using theoretical data of SW redox processes. [source] Speciation and Environmental Fate of Chromium in Rivers Contaminated with Tannery EffluentsENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 2 2007J. Dominik Abstract Redox and size speciation of chromium in rivers contaminated with tannery wastewater was carried out to provide insight into its transport and removal mechanisms. Total chromium was determined with Inductively Coupled Plasma-Mass Spectrometry and Cr,(VI) with Catalytic Adsorption Stripping Voltammetry. For the size speciation, particles were retained with a cartridge filter (cut-off 1.2,,m) and the total filterable fraction was further fractionated with Tangential Flow Filtration to determine the concentrations of chromium associated with the High Molecular Weight Colloidal (HMWC), Low Molecular Weight Colloidal (LMWC) and Truly Dissolved (TD) fractions. Two fluvial systems of similar sizes, but located in contrasting climatic zones, were selected for comparison: the Sebou-Fez system in Morocco and Dunajec River-Czorsztyn Reservoir system in Poland. Particulate Cr dominated in the Sebou-Fez system (about 90,%); while in the Dunajec-Czorsztyn system, it represented only 17,53,% of the total chromium in raw water. Still, the partition coefficients [Kd] were of the same magnitude. Chromium,(III) was the only form detected in Sebou-Fez, whereas in Dunajec-Czorsztyn Cr,(VI) was also present with its proportion increasing downstream from the input of tannery wastewater due to the preferential removal of Cr,(III). In the filtered water in Morocco a large fraction of Cr occurred in the HMWC fraction (50,70,%) at the two most contaminated sites, while the LMWC and TD forms prevailed at the non-contaminated sites in the Sebou River. At a very high concentration, in the water in the proximity of tanneries (well above the theoretical saturation level) Cr precipitated as polynuclear Cr-hydroxide. In Dunajec-Czorsztyn, the partition of Cr,(III) was approximately equal between the HMWC, LMWC and TD fractions, in contrast to Cr,(VI) which occurred almost exclusively in the TD fraction. In both systems, Cr,(III) was rapidly removed from the water to the sediments. The confluence of the Sebou with the Fez and the Czorsztyn reservoir trapped efficiently Cr,(III) preventing its spreading over long distances. Cr,(VI) showed conservative behavior and bypassed the Czorsztyn Reservoir. This study provides a first set of data on the partitioning of Cr,(III) and Cr,(VI) between the particulate, the colloidal and truly dissolved fractions in fluvial systems contaminated with tannery effluents. It also suggests that, in these systems, truly dissolved Cr,(III) can be adequately modeled from the total filterable concentrations. [source] Differential Pulse Anodic Stripping Voltammetric Simultaneous Determination of Copper(II) and Silver(I) with Bis(2-hydroxyacetophenone) Butane-2,3-dihydrazone Modified Carbon Paste ElectrodesELECTROANALYSIS, Issue 19 2010M. B. Gholivand Abstract The behavior of a modified carbon paste electrode (CPE) for simultaneous determination of copper(II) and silver(I) by anodic adsorptive stripping voltammetry (ASV) was studied. The electrode was built incorporating the bis(2-hydroxyacetophenone) butane-2,3-dihydrazone (BHAB) as a complexing agent to a Nujol-graphite base paste. The resulting electrode demonstrated linear responses over the range of Cu(II) and Ag(I) concentrations 0.1,20 and 0.01,2.0,µM respectively. The relative standard deviation (RSD) for the determination of 5.0,µM of both metal ions were 2.9 and 3.1,% for Cu(II) and Ag(I), respectively. The method has been applied to the analysis of copper in wheat and barley seed samples and silver in developed radiological film. [source] Electrode Modified with Cobalt Cyclohexylbutyrate for the Determination of Low Molecular Weight Thiol Group Bearing Compounds Using Catalytic Stripping VoltammetryELECTROANALYSIS, Issue 3 2010Petr Jakubec Abstract Glassy carbon electrode, modified with cobalt(II) cyclohexylbutyrate monohydrate immobilized in polystyrene matrix is usable for determination of thiol group bearing compounds both in oxidized and reduced forms using catalytic stripping voltammetry. The measurements are carried out in acetate buffer (pH,4.3) containing Tween 40. After the accumulation step at ,850,mV vs. Ag/AgCl a peak at ,170,mV is observed on linear sweep voltammogram, the height of which is proportional to the concentration of added thiol. Addition of carbon nanotubes into polystyrene film enhances the sensitivity of the modified electrode. The detection limit is 1×10,6,mol dm,3 for all studied thiols. The electrode can be regenerated by exposing it to the potential between 300,600,mV. [source] Simultaneous Determination of Cadmium, Lead, Copper and Mercury Ions Using Organofunctionalized SBA-15 Nanostructured Silica Modified Graphite,Polyurethane Composite ElectrodeELECTROANALYSIS, Issue 1 2010Ivana Cesarino Abstract A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite,polyurethane composite electrode with SBA-15 silica organofunctionalized with 2-benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ,1.1,V vs. SCE where they complex with 2-benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved. [source] Stripping Voltammetry at Microdisk Electrode Arrays: TheoryELECTROANALYSIS, Issue 24 2009Abstract Anodic stripping voltammetry (ASV) is an extremely powerful tool for detection of metal ions in solution through a two step process of preconcentration of the metal at the electrode surface, followed by electrodissolution. The second phase produces an electroanalytical response proportional to the amount of material deposited in the first phase. This paper utilizes theory to explore the electrochemical signals produced when considering ASV at a microelectrode or ultramicroelectrode arrays. The theory outlined is applicable mostly to thin mercury film absorption and metal adsorption. [source] Renewable Ceramic (TiN) Ring Electrode in Stripping Voltammetry.ELECTROANALYSIS, Issue 16 2009Determination of Pb(II) Without Removal of Oxygen Abstract Characteristic features of the process of Pb(II) reduction and oxidation at a renewable ceramic ring electrode (RCRE) were studied by stripping voltammetry. The main constituents of the RCRE are: a specially constructed TiN ring electrode, a silver sheet used as silver counter/quasi-reference electrode and a silicon O-ring are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RCRE body. The optimal measurement conditions, composition of supporting electrolyte and procedures of the electrode activation were selected. The measurements were carried out from nondeaerated solutions. As shown on selected examples, RCRE exhibits good performance in underpotential deposition stripping voltammetry (UPD-SV) applied for the determination of lead(II) in synthetic solutions with and without surfactants and in certified reference materials. The peak current is proportional to the concentration of lead(II) over the range 2×10,9,1×10,7,mol L,1, with a 3, detection limit of 1×10,9,mol L,1 with an accumulation time of 30,s. The obtained results showed good reproducibility, (RSD=2,5%; n=5) and reliability. [source] Characteristics of Voltammetric Determination and Speciation of Chromium , A ReviewELECTROANALYSIS, Issue 13 2009Andrzej Bobrowski Abstract This article reviews the voltammetric methods of chromium determination, including adsorptive and catalytic adsorptive stripping voltammetry at liquid mercury, metallic films, and modified carbon paste electrodes. The principle applications of the catalytic adsorptive stripping voltammetric method of chromium(VI) determination in the presence of DTPA and nitrate, most useful in the analysis of chromium traces and its speciation, is presented in detail. Special emphasis is put on the presentation and characterization of the voltammetric procedures which make it possible to conduction speciation studies of chromium(VI) in the presence of a great excess of chromium(III) and surfactants. This survey is based on 173 articles. [source] Electroanalytical Determination of Cadmium(II) and Lead(II) Using an Antimony Nanoparticle Modified Boron-Doped Diamond ElectrodeELECTROANALYSIS, Issue 10 2009Kathryn Abstract We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by linear sweep anodic stripping voltammetry (LSASV) using an antimony nanoparticle modified boron doped diamond (Sb-BDD) electrode. Sb deposition was performed in situ with the analytes, from a solution of 1,mg L,1 SbCl3 in 0.1,M HCl (pH,1). Pb2+ inhibited the detection of Cd2+ during simultaneous additions at the bare BDD electrode, whereas in the presence of antimony, both peaks were readily discernable and quantifiable over the linear range 50,500,,g L,1. [source] Quantitative Studies of Metal Ion Adsorption on a Chemically Modified Carbon Surface: Adsorption of Cd(II) and Hg(II) on Glutathione Modified CarbonELECTROANALYSIS, Issue 8 2009Poobalasingam Abiman Abstract The adsorption behavior of model toxic metal cations namely Cd(II) and Hg(II) on carbon surfaces chemically modified by glutathione was investigated as a function of the concentration of Cd2+ and Hg2+ ions, time and the amount of modified carbon used. Square wave and linear sweep anodic stripping voltammetry was used to monitor the uptake of Cd(II) and Hg(II) ions respectively. Kinetic and adsorption isotherm studies reveal that both Cd(II) and Hg(II) ions undergo similar large adsorption with the modified glutathione carbon material (Glu-carbon). [source] |