Home About us Contact | |||
Stress Tolerance (stress + tolerance)
Kinds of Stress Tolerance Selected AbstractsGEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS.EVOLUTION, Issue 2 2003Abstract Spatially varying directional selection together with restricted gene flow among populations is expected to lead to local adaptation. One environmental factor that potentially causes strong directional selection, but is little explored in evolutionary terms, is naturally and anthropogenically induced acidity. We studied local adaptation to acidity in four Swedish populations (two originating from areas that have suffered from severe anthropogenic acidification during the 1900s and two from areas which have remained neutral due to higher buffering capacity) of the moor frog Rana arvalis in a laboratory experiment by investigating whether differences in acid tolerance correspond to population origin. Embryos were raised from fertilization to hatching at three different pH levels (pH 4.0, 4.25 and 7.5), corresponding to levels experienced by these populations in nature, and acid stress tolerance was measured in terms of embryonic survival, hatchling size, and age. Evidence for local adaptation in all of these traits was found, the acid origin embryos having higher survival and less impaired growth performance under acid conditions than the neutral origin embryos. Our estimated rates of divergence (0.007,0.102 haldanes) suggest a rapid adaptation process in response to anthropogenic environmental change, and that the different traits have evolved at relatively similar rates. [source] Antioxidative Enzymes and Sucrose Synthase Contribute to Cold Stress Tolerance in ChickpeaJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2009S. Kaur Abstract Chickpea is sensitive to low temperature (<10°C) during its reproductive stage. Low temperature adversely affects the development of pods and seeds. This study was undertaken to investigate the role of sucrose metabolizing enzymes in seed development and potential of antioxidative enzymes in protecting seeds and podwalls from the deleterious effects of cold stress in advanced cold tolerant chickpea breeding lines. Healthy pod set was observed in these tolerant lines in the end of December where as low temperature susceptible PBG-1 did not flower. Two lines ICCV 96029 and ICCV 96030 showed susceptible characters such as reduced flowering, blackened and shrivelled seeds and yellowish pods in comparison to other cold stress tolerant lines due to sudden dip of temperature (<1 °C) during the first week of January. These two lines were, therefore, treated as susceptible checks in comparison to other tolerant lines. A significantly higher activity and specific activity of sucrose synthase was observed in seeds of most of the cold tolerant lines in comparison with ICCV 96029 and ICCV 96030, thereby providing sugars as well as sugar nucleotides for their growth and starch synthesis during unfavourable low temperature. The developing seeds and podwalls of tolerant genotypes had higher activities of antioxidant enzymes, i.e. catalase, ascorbate peroxidase and glutahione reductase in comparison with ICCV 96029 and ICCV 96030. It appears that the higher activities of antioxidant enzymes in podwall protect the developing seeds from cold stress. [source] The Effects of Tank Color and Light Intensity on Growth, Survival, and Stress Tolerance of White Seabass, Atractoscion nobilis, larvaeJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 5 2009Dave Jirsa [source] Temperature Stress Tolerance of Conifer Seedlings after Exposure to UV-B RadiationPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2005Sylvia J. L'Hirondelle ABSTRACT Ground-level UV-B radiation has increased globally due to a thinning stratospheric ozone layer. We estimated the effects of increased UV-B on 10 conifer species grown in chambers in greenhouses with supplemental UV-B. Species were selected from a wide range of geographic locations. Plant material of two ages (germinants, first growing season; seedlings, second season) were exposed to three levels of UV-B from ambient (at Victoria, B.C., Canada) to three times ambient (12 kJ m,2 d,1) for up to four months. Frost hardiness and heat tolerance of shoots were estimated from changes in chlorophyll fluorescence after exposure to test temperatures. There were no significant differences among seed sources from different elevations in their response to temperature stresses. When UV-B increased above the ambient level, three species (interior Douglas-fir, Engelmann spruce, and interior lodgepole pine) increased in frost hardiness and four (grand fir, interior spruce, yellow-cedar, and western redcedar) decreased. Two species (western redcedar and western hemlock) increased in heat tolerance when UV-B increased to the 12 kJ level. The main differences in stress tolerance were between the triple ambient and the other two treatments, not between ambient and double ambient, suggesting that any changes in UV-B would have to be large to elicit physiological changes in conifer seedlings. [source] Juvenile shrubs show differences in stress tolerance, but no competition or facilitation, along a stress gradientJOURNAL OF ECOLOGY, Issue 1 2000Lisa A. Donovan Summary 1,We investigated experimentally differences in abiotic stress tolerance and the effects of plant,plant interactions for two desert shrubs, Chrysothamnus nauseosus and Sarcobatus vermiculatus, along a soil salinity (NaCl) and boron (B) gradient at Mono Lake, California, USA. Based on differences in natural distribution, and the classical expectation of a trade-off between competitive ability and stress tolerance, we hypothesized that (i) Chrysothamnus would have greater competitive ability than Sarcobatus at the low salinity end of the gradient, and that (ii) Sarcobatus would be more stress tolerant than Chrysothamnus. 2,Juvenile target plants of Chrysothamnus and Sarcobatus were planted into four sites along the gradient. Biomass was determined by destructive harvests over two growing seasons. At each site, interspecific relative competitive ability was assessed as the effect of Sarcobatus neighbours on Chrysothamnus targets compared to the effect of Chrysothamnus neighbours on Sarcobatus targets. Stress tolerance was assessed as the ability of each species to survive and grow, in the absence of neighbours, at different sites along the gradient. 3,The two species did not differ in the relative strength of plant,plant interactions, providing no support for the expectation that Chrysothamnus had greater competitive ability than Sarcobatus. Furthermore, there was no evidence for competition or facilitation, either interspecific or intraspecific, at any site in either year of the study. However, fertilization treatments demonstrated nutrient limitations, soil water reached limiting levels and root systems of targets and neighbours overlapped substantially. It is therefore surprising that plant,plant interactions among juveniles apparently play little role in the growth and survival of shrubs in this saline desert habitat. 4,Sarcobatus was more stress tolerant than Chrysothamnus and the two species performed optimally at different sites along the gradient. Sarcobatus juveniles grew best at the two most saline sites and survived at all sites, whereas Chrysothamnus juveniles grew best at a low-salinity site and did not survive at the most saline site. The difference in site of optimal performance may be due to differences in nutrient limitations or to interactions between nutrient availability and sodium (Na) and B tolerance. [source] Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stressPLANT CELL & ENVIRONMENT, Issue 6 2006SIMEON O. KOTCHONI ABSTRACT Aldehyde dehydrogenases (ALDHs) play a major role in the detoxification processes of aldehydes generated in plants when exposed to abiotic stress. In previous studies, we have shown that the Arabidopsis thaliana ALDH3I1 gene is transcriptionally activated by abiotic stress, and over-expression of the ALDH3I1 gene confers stress tolerance in transgenic plants. The A. thaliana genome contains 14 ALDH genes expressed in different sub-cellular compartments and are presumably involved in different reactions. The purpose of this study was to compare the potential of a cytoplasmic and a chloroplastic stress-inducible ALDH in conferring stress tolerance under different conditions. We demonstrated that constitutive or stress-inducible expression of both the chloroplastic ALDH3I1 and the cytoplasmic ALDH7B4 confers tolerance to osmotic and oxidative stress. Stress tolerance in transgenic plants is accompanied by a reduction of H2O2 and malondialdehyde (MDA) derived from cellular lipid peroxidation. Involvement of ALDHs in stress tolerance was corroborated by the analysis of ALDH3I1 and ALDH7B4 T-DNA knockout (KO) mutants. Both mutant lines exhibited higher sensitivity to dehydration and salt than wild-type (WT) plants. The results indicate that ALDH3I1 and ALDH7B4 not only function as aldehyde-detoxifying enzymes, but also as efficient reactive oxygen species (ROS) scavengers and lipid peroxidation-inhibiting enzymes. The potential of ALDHs to interfere with H2O2 was also shown for recombinant bacterial proteins. [source] Maternal control of cold and desiccation tolerance in eggs of the band-legged ground cricket Dianemobius nigrofasciatus in relation to embryonic diapauseENTOMOLOGICAL RESEARCH, Issue 1 2008Shin G. GOTO Abstract Cold and desiccation tolerance was investigated in the eggs of the band-legged ground cricket Dianemobius nigrofasciatus in relation to embryonic diapause. Diapause eggs were more tolerant to both desiccation and cold than non-diapause eggs. In addition, diapause-destined eggs on day zero (0,12 h after being laid) already showed high tolerance to these stresses before entering diapause. This clearly indicates that stress tolerance, like diapause, is controlled by photoperiod, but is not directly associated with diapause itself. Because the acquisition of stress tolerance predates the onset of diapause, it is plausible that diapause programming during some period before the onset of diapause is involved in the acquisition of stress tolerance. Weights and sizes were nearly identical in short-day and long-day eggs until day five. Sorbitol, a major sugar alcohol in eggs of D. nigrofasciatus, was accumulated at the same level in short-day and long-day eggs on days zero and five. These results indicate that the surface-to-volume ratio as well as the accumulation of sugar alcohol is not involved in the acquisition of stress tolerance. Maternal factors are clearly involved in the acquisition of stress tolerance in D. nigrofasciatus eggs, but the physiological mechanisms underlying the tolerance are still unclear. [source] Lack of CbrB in Pseudomonas putida affects not only amino acids metabolism but also different stress responses and biofilm developmentENVIRONMENTAL MICROBIOLOGY, Issue 6 2010Cristina I. Amador Summary The CbrAB two-component system has been described in certain species of Pseudomonads as a global regulatory system required for the assimilation of several amino acids (e.g. histidine, proline or arginine) as carbon or carbon and nitrogen sources. In this work, we used global gene expression and phenotypic analyses to characterize the roles of the CbrAB system in Pseudomonas putida. Our results show that CbrB is involved in coordination with the nitrogen control system activator, NtrC, in the uptake and assimilation of several amino acids. In addition, CbrB affects other carbon utilization pathways and a number of apparently unrelated functions, such as chemotaxis, stress tolerance and biofilm development. Based on these new findings, we propose that CbrB is a high-ranked element in the regulatory hierarchy of P. putida that directly or indirectly controls a variety of metabolic and behavioural traits required for adaptation to changing environmental conditions. [source] Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: Implications for ecological risk assessmentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2002Carlos Barata Abstract Previous attempts to test the hypothesis that laboratory selection of isogenetic populations can produce test organisms with a significantly increased mean tolerance to toxic substances have failed. One possible explanation for such failure is that the tolerance of laboratory populations is largely constrained by their origins (were the source populations composed of tolerant genotypes?). To address this question, among- and within-population variability in stress tolerance was assessed by calculating the variance in individual fitness and longevity across a cadmium gradient (0,10 ,g/L). The study employed Daphnia magna clones from four geographically separate European populations. Results revealed significant differences in tolerance to lethal levels of toxic stress among populations. The distribution of tolerances within two of the studied populations showed high amounts of genetic variation in tolerance. Genetic relationships between tolerance traits and life history performance under nonstressful environments differed among the studied populations. One population showed significant but low costs associated with tolerance, whereas no costs were associated with tolerance in the other population. These results suggest that laboratory selection will favor individuals with high fitness or reproductive performance under optimal laboratory conditions resulting in laboratory populations with similar or lower tolerance to toxic stress than their original field populations. Given that populations can exhibit high levels of genetic variability in tolerance to toxic stress, minimizing genetic diversity in toxicity tests will increase the uncertainty attendant in extrapolating from the lab to the field. [source] Paternal contribution to fetal alcohol syndromeADDICTION BIOLOGY, Issue 2 2004Ernest Abel Maternal alcohol use during pregnancy is associated with a wide range of adverse outcomes for the child. Many women who drink during pregnancy also have male partners who abuse alcohol. Existing data on paternal effects of alcohol abuse during the preconceptual period and at the time of conception are reviewed. Epidemiological data offer some support for a paternal influence on birth weight, congenital heart defects, and some evidence of mild cognitive impairments. Animal data have demonstrated decreased litter size, increased prevalence of low birth weight fetuses and mixed data on risk of malformations. Increased susceptibility to Pseudomonas bacterial infection has been reported. Cognitive and behavioral findings are the most robust effects. These include learning and memory deficits, hyperactivity, and poor stress tolerance. Multiple causal mechanisms for a paternal effect have been suggested, but none seems satisfactory to explain all findings. Further research is needed on paternal effects in animals and human populations. The results of this research may influence prevention activities. [source] GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS.EVOLUTION, Issue 2 2003Abstract Spatially varying directional selection together with restricted gene flow among populations is expected to lead to local adaptation. One environmental factor that potentially causes strong directional selection, but is little explored in evolutionary terms, is naturally and anthropogenically induced acidity. We studied local adaptation to acidity in four Swedish populations (two originating from areas that have suffered from severe anthropogenic acidification during the 1900s and two from areas which have remained neutral due to higher buffering capacity) of the moor frog Rana arvalis in a laboratory experiment by investigating whether differences in acid tolerance correspond to population origin. Embryos were raised from fertilization to hatching at three different pH levels (pH 4.0, 4.25 and 7.5), corresponding to levels experienced by these populations in nature, and acid stress tolerance was measured in terms of embryonic survival, hatchling size, and age. Evidence for local adaptation in all of these traits was found, the acid origin embryos having higher survival and less impaired growth performance under acid conditions than the neutral origin embryos. Our estimated rates of divergence (0.007,0.102 haldanes) suggest a rapid adaptation process in response to anthropogenic environmental change, and that the different traits have evolved at relatively similar rates. [source] Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapauseFEBS JOURNAL, Issue 4 2007Tao Chen Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H2O2 than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism. [source] Listeria monocytogenes response regulators important for stress tolerance and pathogenesisFEMS MICROBIOLOGY LETTERS, Issue 1 2001Birgitte H. Kallipolitis Abstract Environmental sensing by two-component signal transduction systems is likely to play a role for growth and survival of Listeria monocytogenes both during transmission in food products and within a host organism. Two-component systems typically consist of a membrane-associated sensor histidine kinase and a gene regulatory protein, the response regulator (RR). We have identified seven putative RR genes in L. monocytogenes LO28 by PCR using degenerate oligonucleotide primers. By insertional inactivation we obtained data suggesting that three of the putative RRs contribute to the pathogenicity of L. monocytogenes in mice. Strikingly, the mutants that were attenuated in virulence also had a decreased ability to grow in the presence of various stress conditions potentially encountered in an infection process. Thus, our data point to a connection between the ability of the putative two-component systems to sense and respond to certain environmental stimuli, and the virulence of L. monocytogenes. [source] Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilmsFEMS YEAST RESEARCH, Issue 5 2008Grégoire Gales Abstract The resistance of Saccharomyces cerevisiae to oxidative stress (H2O2 and Cd2+) was compared in biofilms and planktonic cells, with the help of yeast mutants deleted of genes related to glutathione metabolism and oxidative stress. Biofilm-forming cells were found predominantly in the G1 stage of the cell cycle. This might explain their higher tolerance to oxidative stress and the young replicative age of these cells in an old culture. The reduced glutathione status of S. cerevisiae was affected by the growth phase and apparently plays an important role in oxidative stress tolerance in cells growing as a biofilm. [source] Pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosaFUNCTIONAL ECOLOGY, Issue 3 2009Maaike Y. Bader Summary 1Germination and seedling performance may set the limits for plant distributions, particularly in stressful habitats. Stressful conditions at these early stages may be avoided by opportunistic germination and growth, or may be tolerated. Many epiphytic plants are frequently exposed to severe drought. Adult epiphytes endure such dry periods in various ways, but little is known about strategies employed during germination and early life. 2Epiphyte seedlings could show either opportunistic fast growth to quickly attain the benefits of being larger or inherently slow growth and early drought tolerance. Here we address the question: which of these strategies characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa, a species typical for dry tropical habitats? 3We studied growth and drought tolerance of germinating seeds, of the emerging seedlings and of 2-month-old seedlings under controlled conditions. Additionally, we studied drought hardening in 6-month-old seedlings. 4Germination of T. flexuosa was reduced by intermittent dry periods. However, compared to the congeneric T. fasciculata, which typically occurs in wetter habitats, the depression of germination by drought was small. Seedling growth was fastest at intermediate moisture levels: both prolonged drought and continuous moisture depressed growth. Prolonged drought had a less negative effect on drought-hardened seedlings than on previously well-watered seedlings. After a 3-week drought treatment the previously well-watered seedlings had lost their growth advantage entirely. Had drought continued, they would have probably been starved, indicated by the low level of their non-structural carbohydrate pool. 5Tillandsia flexuosa employs a stress-tolerance strategy both during germination and during the seedling stage. In its epiphytic habitat this strategy is clearly adaptive, considering the predictable briefness of moisture availability throughout the year and the low competition pressure that allows the very slow growth typically seen in adults and seedlings. These conditions characterize not only the dry-forest habitat of T. flexuosa, but all exposed epiphytic growing sites, so we expect this early stress-tolerance to be common among epiphytes in general. Still, a lower stress tolerance in species from wetter habitats may at least partly explain why T. flexuosa shares its dry-forest habitat with so few other vascular epiphytes. [source] The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a reviewGCB BIOENERGY, Issue 2 2009J. RYAN STEWART Abstract Among several candidate perennial taxa, Miscanthus×giganteus has been evaluated and promoted as a promising bioenergy crop. Owing to several limitations, however, of the sterile hybrid, both at the taxon and agronomic production levels, other options need to be explored to not only improve M. ×giganteus, which was originally collected in Japan, but to also consider the development of other members of its genus, including Miscanthus sinensis, as bioenergy crops. Indeed, there is likely much to be learned and applied to Miscanthus as a bioenergy crop from the long history of intensive interaction between humans and M. sinensis in Japan, which in some regions of the country spans several thousand years. Combined with its high amount of genetic variation, stress tolerance, biotic interactions with fauna, and function as a keystone species in diverse grasslands and other ecosystems within its native range, the unique and extensive management of M. sinensis in Japan as a forage grass and building material provides agronomists, agroecologists, and plant breeders with the capability of better understanding this species in terms of potential contribution to bioenergy crop development. Moreover, the studies described in this review may serve as a platform for future research of Miscanthus as a bioenergy crop in other parts of the world. [source] Molecular mechanisms of heavy metal tolerance and evolution in invertebratesINSECT SCIENCE, Issue 1 2009Thierry K. S. Janssens Abstract Following the genomics revolution, our knowledge of the molecular mechanisms underlying defenses against stress has been greatly expanded. Under strong selective pressure many animals may evolve an enhanced stress tolerance. This can be achieved by altering the structure of proteins (through mutations in the coding regions of genes) or by altering the amount of protein (through changes in transcriptional regulation). The latter type of evolution can be achieved by substitutions in the promoter of the gene of interest (cis -regulatory change) or by altering the structure or amount of transcriptional regulator proteins (trans -regulatory change). The metallothionein system is one of the best studied stress response systems in the context of heavy metals. Metallothionein expression is assumed to be regulated by metal transcription factor 1 (MTF-1); however, up to now the involvement of MTF-1 has only been proven for some vertebrates and Drosophila. Data on invertebrates such as nematodes and earthworms suggest that other mechanisms of metallothionein induction may be present. A detailed study of Cd tolerance was done for a species of soil-living springtail, Orchesella cincta. The metallothionein gene of this species is overexpressed in metal-exposed field populations. Analysis of the metallothionein promoter has demonstrated extensive polymorphisms that have a functional significance, as shown in bioreporter assays. In a study comparing 20 different populations, the frequency of a high-expresser promoter allele was positively correlated with the concentration of metals in soil, especially Cd. The springtail study shows that cis -regulatory change of genes involved in the cellular stress response may contribute to evolution of metal tolerance. [source] Physiological and Biochemical Responses of Hexaploid and Tetraploid Wheat to Drought StressJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2000V. Chandrasekar An experiment was conducted to investigate the physiological and biochemical responses of two hexaploids viz., C 306 (water stress tolerant) and Hira (water stress susceptible), and two tetraploids, HW 24 (Triticum dicoccum) and A 9-30-1 (Triticum durum) wheat genotypes to water stress under pot culture condition. Water stress was imposed for a uniform period of 10 days at 50, 60 and 70 days after sowing (DAS) and observations were recorded at 60, 70 and 80 DAS. Total dry matter and plant height were recorded at harvest. Water stress caused a decline in relative water content (RWC), chlorophyll and carotenoid content, membrane stability and nitrate reductase activity and increased accumulation of proline at all stages and abscisic acid (ABA) at 80 DAS in all the genotypes. Both the tetraploids showed a lower reduction in RWC and highest ABA accumulation under water stress. Among the hexaploids Hira showed the most decline in RWC and the lowest ABA accumulation. The tetraploids also showed comparatively higher carotenoid content and membrane stability, closely followed by C 306, while Hira showed the minimum response under water stress. Nitrate reductase activity and chlorophyll content under irrigated conditions were highest in Hira but under water stress the lowest per cent decline was observed in C 306, followed by HW 24, A 9-30-1, and Hira. Proline accumulation under water stress conditions was highest in hexaploids C 306 and Hira and lowest in tetraploids HW 24 and A 9-30-1. Tetraploids HW 24, followed by A 9-30-1 maintained higher plant height and total dry matter (TDM) under water stress and also showed a lower per cent decline under stress than hexaploids C 306 and Hira. From the results it is clear that proline accumulation did not contribute to better drought tolerance of tetraploids than hexaploids. It is also apparent that water stress tolerance is the result of the cumulative action of various physiological processes, and all the parameters/processes may not be positively associated with the drought tolerance of a particular tolerant genotype. [source] Improving low water activity and desiccation tolerance of the biocontrol agent Pantoea agglomerans CPA-2 by osmotic treatmentsJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2006N. Teixidó Abstract Aims:, To study the improvement of tolerance to low water activity (aw) and desiccation during spray drying in Pantoea agglomerans cells subjected to mild osmotic stress during growth. Methods and Results:, The micro-organism was cultured in an unmodified liquid (control) or in aw -modified media, and viability of these cells was evaluated on unstressed (0·995) and 0·96 aw stressed solid media, in order to check total viability and aw stress tolerance respectively. Significant improvements in viability on unmodified medium were observed with cells grown for 24 h in NaCl 0·98 aw, glycerol 0·98 aw and 0·97 aw and for 48 h in NaCl 0·98 aw and 0·97 aw modified media. Both yield improvements and water stress tolerance were achieved with low aw media. Cells grown for 24 h in NaCl 0·98 aw or for 48 h in NaCl 0·98 aw, 0·97 aw and 0·96 aw, glucose 0·97 aw and glycerol 0·97 aw showed improved aw stress tolerance in comparison with control cells. The best results were obtained with NaCl treatments (0·98 aw and 0·97 aw) which also exhibited better survival rates than control cells during spray-drying process and maintained their efficacy against postharvest fungal pathogens in apples and oranges. Conclusions:, NaCl treatments are very appropriate for improving P. agglomerans low aw tolerance obtaining high production levels and maintaining biocontrol efficacy. Significance and Impact of the Study:, Improving stress tolerance of biocontrol agents could be an efficient way to obtain consistency and maintain efficacy of biological control under practical conditions. [source] The formation of mixed culture biofilms of oral species along a gradient of shear stressJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2000K.A. Saunders A chemostat mixed culture system was used to produce two distinct ecological states, state-1 (caries-like microcosm) and state-2 (periodontal-like microcosm). Eleven bacterial species (Streptococcus gordonii, Strep. mitis I, Strep. mutans, Strep. oralis, Actinomyces naeslundii, Lactobacillus casei, Neisseria subflava, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella nigrescens, Veillonella dispar) were used to inoculate the planktonic system. A flow cell, designed to produce convergent flow with increasing shear stress, was attached to the chemostat system, and the resultant biofilms developed from the state-1 and state-2 microcosms along the shear stress gradient were examined and compared using image analysis and viable counts. The biofilm produced from state-1 showed a lower shear stress tolerance (0·146 Pa) than the state-2 biofilm (0·236 Pa). The biofilm compositions did not vary along the gradient of shear stress and were dependent on the initial inoculum conditions. Gram-positive species were predominant in the state-1 biofilm, while Gram-negative species were predominant in state-2. [source] The Legionella pneumophila Dps homolog is regulated by iron and involved in multiple stress toleranceJOURNAL OF BASIC MICROBIOLOGY, Issue S1 2009Ming-jia Yu Abstract Iron homeostasis is essential to almost all organisms. In this study, we identified the putative homolog of the iron-storage protein-encoding gene, dpsL, in the intracellular pathogen Legionella pneumophila and demonstrated its expression under iron-limited conditions and its responses to multiple stresses. Quantitative real-time PCR analysis indicated that the expression of dpsL was enhanced under iron limitation regardless of the growth phase. Compared with the wild-type cells, the cells devoid of dpsL were heat and H2O2 -sensitive. In contrast to the dps mutants of other bacteria, the growth of the dpsL mutant in an iron-deprived medium was delayed but finally reached the same cell density as wild-type cells during the stationary phase of growth. The finding that the dpsL mutant is salt resistant suggested the involvement of DpsL in virulence. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Cyclophilin D links programmed cell death and organismal aging in Podospora anserinaAGING CELL, Issue 5 2010Diana Brust Summary Cyclophilin D (CYPD) is a mitochondrial peptidyl prolyl- cis,trans -isomerase involved in opening of the mitochondrial permeability transition pore (mPTP). CYPD abundance increases during aging in mammalian tissues and in the aging model organism Podospora anserina. Here, we show that treatment of the P. anserina wild-type with low concentrations of the cyclophilin inhibitor cyclosporin A (CSA) extends lifespan. Transgenic strains overexpressing PaCypD are characterized by reduced stress tolerance, suffer from pronounced mitochondrial dysfunction and are characterized by accelerated aging and induction of cell death. Treatment with CSA leads to correction of mitochondrial function and lifespan to that of the wild-type. In contrast, PaCypD deletion strains are not affected by CSA within the investigated concentration range and show increased resistance against inducers of oxidative stress and cell death. Our data provide a mechanistic link between programmed cell death (PCD) and organismal aging and bear implications for the potential use of CSA to intervene into biologic aging. [source] Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesisJOURNAL OF ECOLOGY, Issue 6 2009Christian Smit Summary 1. ,The stress gradient hypothesis (SGH) predicts a shift from net negative interactions in benign environments towards net positive in harsh environments in ecological communities. While several studies found support for the SGH, others found evidence against it, leading to a debate on how nature and strength of species interactions change along stress gradients, and to calls for new empirical and theoretical work. 2. ,In the latest attempt in this journal, it is successfully argued how the SGH should be expanded by considering different life strategies of species (stress tolerance versus competitive ability) and characteristics of abiotic stress (resource versus non-resource based) over wider stress gradients (opposed to low,high contrasts), but the crucial role of biotic stress by consumers is largely ignored in this refinement. 3. ,We point out that consumers strongly alter the outcome of species interactions in benign and harsh environments, and show how inclusion of consumer-incurred biotic stress alters the predicted outcome of interactions along resource- and non-resource-based stress gradients for stress-tolerant and competitive benefactors and beneficiaries. 4. ,Synthesis. New studies should include stress gradients consisting of both abiotic and biotic components to disentangle their impacts, and to improve our understanding of how species interactions change along environmental gradients. [source] Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forestJOURNAL OF ECOLOGY, Issue 2 2007JONATHAN A. MYERS Summary 1To survive in forest understoreys, seedlings must depend on carbohydrate reserves when they experience negative carbon balance imposed by occasional light reduction and tissue loss to herbivores and diseases. We present the first experimental evidence in support of this hypothesis, using seven woody neotropical species. 2We transplanted seedlings that had recently expanded their first photosynthetic cotyledon or leaf to the forest understorey (1% of full sun) and quantified initial biomass and total non-structural carbohydrate (TNC) in stems, roots and storage cotyledons. We then randomly assigned seedlings to control and two stress treatments: light reduction (0.08% of full sun for 8 weeks) and complete defoliation. 3First-year survival of control seedlings, a comparative measure of shade tolerance, differed widely among species. The two stress treatments reduced survival and relative growth rates (RGR) of all species. Shade-tolerant species were little impacted by the stress treatments, whereas the two least shade-tolerant species experienced 100% mortality. 4In all treatments, 8-week and first-year survival was positively correlated with initial TNC pool size in stems and roots. By contrast, survival was generally not correlated with initial TNC concentration in any organ, TNC pools in cotyledons, seed mass or seedling biomass. 5TNC in stems and roots, but not in cotyledons, decreased in response to light reduction and defoliation over 8 weeks. Leaf area recovery of defoliated seedlings was positively correlated with initial TNC pools in stems and roots. 6First-year survival in each treatment was negatively correlated with 0,8 week RGR of control seedlings, suggesting higher stress tolerance of species with inherently slow growth rates in shade. RGR of control seedlings from 0 to 8 weeks was negatively correlated with initial TNC pools, but not concentrations, in stems and roots. After 8 weeks, RGR was positive for all species, without clear relationships with survival or TNC. 7We conclude that carbohydrate storage in stems and roots enhances long-term survival in shade by enabling seedlings to cope with periods of biotic and abiotic stress. Carbohydrate storage is a key functional trait that can explain species differences in growth and survival that lead to species coexistence through niche assembly processes and life-history trade-offs. [source] Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South AfricaJOURNAL OF ECOLOGY, Issue 1 2007ANNA L. JACOBSEN Summary 1Climate change in South Africa may threaten the sclerophyllous evergreen shrubs of this region. Available data suggest that they are not as tolerant of water stress as chaparral shrubs occurring in climatically similar California, USA. 2Seventeen species from nine angiosperm families, including both fynbos and succulent karoo species, were studied at a field site in Western Cape Province, South Africa. Minimum seasonal pressure potential (Pmin), xylem specific conductivity (Ks), stem strength against breakage (modulus of rupture, MOR), xylem density, theoretical vessel implosion resistance () and several fibre and vessel anatomical traits were measured. 3Species displayed great variability in Pmin, similar to the range reported for chaparral and karoo shrub species, but in contrast to previous reports for fynbos shrubs. 4More negative Pmin was associated with having greater xylem density, MOR and . There was no relationship between Pmin and traits associated with increased water transport efficiency. 5Xylem density integrates many xylem traits related to water stress tolerance, including Pmin, MOR and , as well as percentage fibre wall, parenchyma, vessel area and fibre lumen diameter. 6Xylem density may be an integral trait for predicting the impact of climate change on evergreen shrubs. [source] Juvenile shrubs show differences in stress tolerance, but no competition or facilitation, along a stress gradientJOURNAL OF ECOLOGY, Issue 1 2000Lisa A. Donovan Summary 1,We investigated experimentally differences in abiotic stress tolerance and the effects of plant,plant interactions for two desert shrubs, Chrysothamnus nauseosus and Sarcobatus vermiculatus, along a soil salinity (NaCl) and boron (B) gradient at Mono Lake, California, USA. Based on differences in natural distribution, and the classical expectation of a trade-off between competitive ability and stress tolerance, we hypothesized that (i) Chrysothamnus would have greater competitive ability than Sarcobatus at the low salinity end of the gradient, and that (ii) Sarcobatus would be more stress tolerant than Chrysothamnus. 2,Juvenile target plants of Chrysothamnus and Sarcobatus were planted into four sites along the gradient. Biomass was determined by destructive harvests over two growing seasons. At each site, interspecific relative competitive ability was assessed as the effect of Sarcobatus neighbours on Chrysothamnus targets compared to the effect of Chrysothamnus neighbours on Sarcobatus targets. Stress tolerance was assessed as the ability of each species to survive and grow, in the absence of neighbours, at different sites along the gradient. 3,The two species did not differ in the relative strength of plant,plant interactions, providing no support for the expectation that Chrysothamnus had greater competitive ability than Sarcobatus. Furthermore, there was no evidence for competition or facilitation, either interspecific or intraspecific, at any site in either year of the study. However, fertilization treatments demonstrated nutrient limitations, soil water reached limiting levels and root systems of targets and neighbours overlapped substantially. It is therefore surprising that plant,plant interactions among juveniles apparently play little role in the growth and survival of shrubs in this saline desert habitat. 4,Sarcobatus was more stress tolerant than Chrysothamnus and the two species performed optimally at different sites along the gradient. Sarcobatus juveniles grew best at the two most saline sites and survived at all sites, whereas Chrysothamnus juveniles grew best at a low-salinity site and did not survive at the most saline site. The difference in site of optimal performance may be due to differences in nutrient limitations or to interactions between nutrient availability and sodium (Na) and B tolerance. [source] JNK signaling in insulin-producing cells is required for adaptive responses to stress in DrosophilaAGING CELL, Issue 3 2009Jason Karpac Summary Adaptation to environmental challenges is critical for the survival of an organism. Repression of Insulin/IGF Signaling (IIS) by stress-responsive Jun-N-terminal Kinase (JNK) signaling is emerging as a conserved mechanism that allows reallocating resources from anabolic to repair processes under stress conditions. JNK activation in Insulin-producing cells (IPCs) is sufficient to repress Insulin and Insulin-like peptide (ILP) expression in rats and flies, but the significance of this interaction for adaptive responses to stress is unclear. In this study, it is shown that JNK activity in IPCs of flies is required for oxidative stress-induced repression of the Drosophila ILP2. It is found that this repression is required for growth adaptation to heat stress as well as adult oxidative stress tolerance, and that induction of stress response genes in the periphery is in part dependent on IPC-specific JNK activity. Endocrine control of IIS by JNK in IPCs is thus critical for systemic adaptation to stress. [source] Reproductive value in a complex life cycle: heat tolerance of the pitcher-plant mosquito, Wyeomyia smithiiJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2005P. A. Zani Abstract Because mortality accumulates with age, Fisher proposed that the strength of selection acting on survival should increase from birth up to the age of first reproduction. Hamilton later theorized that the strength of selection acting on survival should not change from birth to age at first reproduction. As organisms in nature do not live in uniform environments but, rather, experience periodic stress, we hypothesized that resistance to environmental stress should increase (Fisher) or remain constant (Hamilton) from birth to age at first reproduction. Using the pitcher-plant mosquito, Wyeomyia smithii, we imposed heat stress by simulating the passage of a warm-weather front at different preadult and adult stages. Contrary to either Fisher or Hamilton, stress tolerance declined from embryos to larvae to pupae to adults. Consequently, reproductive value appears to have been of little consequence in the evolution of stage-specific tolerance of heat stress in W. smithii. [source] Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modificationAGING CELL, Issue 2 2005Shi-Yan Li Summary Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24,26-month) mice using a MyoCam® system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (± dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, ± dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was ,2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4,7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs. [source] Polyculture production of juvenile fishes for survival in natureJOURNAL OF FISH BIOLOGY, Issue 2004J. S. Burke Production of seed for stock enhancement projects requires consideration of the behavioural quality of the animals to be released in the wild. Our approach to improving behavioural quality of hatchery fish is to raise them in polyculture with the plants or animals that fish normally utilize as shelter in nature. Results suggest that such ,naturalized' systems provide a broad improvement in behaviour as both predator avoidance and feeding skills were improved relative to control hatchery fish. In addition fish in a naturalized system grew better and were more tolerant of stress than were fish reared by traditional hatchery methods. We hypothesize that the spatial heterogeneity of our ,naturalized' systems provided training in both hiding and seeking and that these activities improved feed conversion and stress tolerance. [source] |