Stress Response Mechanisms (stress + response_mechanism)

Distribution by Scientific Domains


Selected Abstracts


The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae

MOLECULAR MICROBIOLOGY, Issue 1 2005
Jaime Aguilera
Summary A sudden overaccumulation of methylglyoxal (MG) induces, in Saccharomyces cerevisiae, the expression of MG-protective genes, including GPD1, GLO1 and GRE3. The response is partially dependent on the transcriptional factors Msn2p/Msn4p, but unrelated with the general stress response mechanism. Here, we show that the high-osmolarity glycerol (HOG)-pathway controls the genetic response to MG and determines the yeast growth capacity upon MG exposure. Strains lacking the MAPK Hog1p, the upstream component Ssk1p or the HOG-dependent nuclear factor Msn1p, showed a reduction in the mRNA accumulation of MG-responsive genes after MG addition. Moreover, hyperactivation of Hog1p by deletion of protein phosphatase PTP2 enhanced the response, while blocking the pathway by deletion of the MAPKK PBS2 had a negative effect. In addition, the activity of Hog1p affected the basal level of GPD1 mRNA under non-inducing conditions. These effects had a great influence on MG resistance, as hog1, and other HOG-pathway mutants with impaired MG-specific expression displayed MG sensitivity, whereas those with enhanced expression exhibited MG resistance as compared with the wild-type. However, MG does not trigger the overphosphorylation of Hog1p or its nuclear import in the parental strain. Moreover, dual phosphorylation of Hog1p appears to be dispensable in the triggering of the transcriptional response, although a phosphorylable form of Hog1p is fundamental for the transcriptional activity. Overall, our results suggest that the basal activity of the HOG-pathway serves to amplify the expression of MG-responsive genes under non-inducing and inducing conditions, ensuring cell protection against this toxic glycolytic by-product. [source]


Monitoring of protein profiles for the optimization of recombinant fermentation processes using public domain databases

ELECTROPHORESIS, Issue 1-2 2003
Karin Dürrschmid
Abstract The expression of human superoxide dismutase in fed-batch fermentation of E. coli HMS174(DE3)(pET3ahSOD) was studied as model system. Due to the frequently used strong T7 promoter system a high metabolic load is exerted, which triggers stress response mechanisms and finally leads to the differentiation of the host cell. As a consequence, host cell metabolism is partly shifted from growth to survival accompanied by significant alterations of the protein pattern. In terms of process optimization two-dimensional electrophoresis deserves as a powerful tool to monitor these changes on protein level. For the analysis of samples derived from different states of recombinant protein production wide-range Immobiline Dry Strips pH 3,10 were used. In order to establish an efficient procedure for accelerated process optimization and to avoid costly and time-consuming analysis like mass spectrometry (MS), a database approach for the identification of significant changes of the protein pattern was evaluated. On average, 935 spots per gel were detected, whereby 50 are presumably stress-relevant. Out of these, 24 proteins could be identified by using the SWISS-2DPAGE database (www.expasy.ch/ch2d/). The identified proteins are involved in regulatory networks, energy metabolism, purine and pyrimidine nucleotide synthesis and translation. By this database approach, significant fluctuations of individual proteins in relation to recombinant protein production could be identified. Seven proteins show strong alterations (>100%) directly after induction and can therefore be stated as reliable marker proteins for the assessment of stress response. For distinctive interpretation of this highly specific information, a bioinformatic and statistic tool would be essential in order to perceive the role and contribution of individual proteins in stress response. [source]


Cellular response to oxidative stress: Signaling for suicide and survival,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002
Jennifer L. Martindale
Reactive oxygen species (ROS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment as they can result in severe damage to DNA, protein, and lipids. The importance of oxidative damage to the pathogenesis of many diseases as well as to degenerative processes of aging has becoming increasingly apparent over the past few years. Cells contain a number of antioxidant defenses to minimize fluctuations in ROS, but ROS generation often exceeds the cell's antioxidant capacity, resulting in a condition termed oxidative stress. Host survival depends upon the ability of cells and tissues to adapt to or resist the stress, and repair or remove damaged molecules or cells. Numerous stress response mechanisms have evolved for these purposes, and they are rapidly activated in response to oxidative insults. Some of the pathways are preferentially linked to enhanced survival, while others are more frequently associated with cell death. Still others have been implicated in both extremes depending on the particular circumstances. In this review, we discuss the various signaling pathways known to be activated in response to oxidative stress in mammalian cells, the mechanisms leading to their activation, and their roles in influencing cell survival. These pathways constitute important avenues for therapeutic interventions aimed at limiting oxidative damage or attenuating its sequelae. Published 2002 Wiley-Liss, Inc. [source]


Odorants as cell-type specific activators of a heat shock response in the rat olfactory mucosa

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2001
Virginian McMillan Carr
Abstract Heat shock, or stress, proteins (HSPs) are induced in response to conditions that cause protein denaturation. Activation of cellular stress responses as a protective and survival mechanism is often associated with chemical exposure. One interface between the body and the external environment and chemical or biological agents therein is the olfactory epithelium (OE). To determine whether environmental odorants affect OE HSP expression, rats were exposed to a variety of odorants added to the cage bedding. Odorant exposure led to transient, selective induction of HSP70, HSC70, HSP25, and ubiquitin immunoreactivities (IRs) in supporting cells and subepithelial Bowman's gland acinar cells, two OE non-neuronal cell populations involved with inhalant biotransformation, detoxification, and maintenance of overall OE integrity. Responses exhibited odor specificity and dose dependency. HSP70 and HSC70 IRs occurred throughout the apical region of supporting cells; ubiquitin IR was confined to a supranuclear cone-shaped region. Electron microscopic examination confirmed these observations and, additionally, revealed odor-induced formation of dense vesicular arrays in the cone-like regions. HSP25 IR occurred throughout the entire supporting cell cytoplasm. In contrast to classical stress responses, in which the entire array of stress proteins is induced, no increases in HSP40 and HSP90 IRs were observed. Extended exposure to higher odorant doses caused prolonged activation of the same HSP subset in the non-neuronal cells and severe morphological damage in both supporting cells and olfactory receptor neurons (ORNs), suggesting that non-neuronal cytoprotective stress response mechanisms had been overwhelmed and could no longer adequately maintain OE integrity. Significantly, ORNs showed no stress responses in any of our studies. These findings suggest a novel role for these HSPs in olfaction and, in turn, possible involvement in other normal neurophysiological processes. J. Comp. Neurol. 432:425,439, 2001. © 2001 Wiley-Liss, Inc. [source]