Streptozotocin

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Streptozotocin

  • streptozotocin injection

  • Selected Abstracts


    Effect of streptozotocin on the ultrastructure of rat pancreatic islets

    MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2004
    M. Daisy Mythili
    Abstract Our objective was to study the effects of three (30, 40, and 50 mg/kg) doses of Streptozotocin (STZ) on fasting plasma glucose level (FPG) and observe its effects at the cellular level in rat pancreas by electron microscopy. FPG was measured in rats before induction of diabetes and then on 3, 7, and 14 days after induction of diabetes with STZ. Keto diastix urine strips were used to check urine glucose and ketone bodies. Two weeks after the induction of diabetes, the rat pancreas was removed and fixed for light and electron microscopic studies. Three days after induction, the mean FPG level was 112 mg/dl in Group I (30 mg/kg STZ), 217 mg/dl in Group II (40 mg/kg STZ), and 376 mg/dl in Group III (50 mg/kg STZ). Histology was normal in Group I but revealed altered islet structure in Groups II and III. Ultrastructure revealed intact D cells in all three groups. The focal mitochondria and Golgi complex swelling found in A and B cells was occasional in Group I and frequent in Groups II and III. Swelling of other organelles and reduction in the size and number of granules was further observed in Group III. It is our conclusion that the 30-mg/kg body weight STZ produces mild changes while 50 mg/kg proves to be fatal. STZ at 40 mg/kg has a moderate effect on plasma glucose as well as on the islets of Langerhans at a cellular level. Microsc. Res. Tech. 63:274,281, 2004. © 2004 Wiley-Liss, Inc. [source]


    Inhibitors of advanced glycation end-products prevent loss of enteric neuronal nitric oxide synthase in diabetic rats

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 3 2008
    P. V. S. Jeyabal
    Abstract, Gastrointestinal dysfunction is common in diabetes, and several studies indicate that loss of neuronal nitrergic inhibition may play an important role in its pathogenesis. However, the mechanisms responsible for this effect remain largely unknown. We have previously shown that advanced glycation end-products (AGEs) formed by non-enzymatic glycation dependent processes, can inhibit the expression of intestinal neuronal nitric oxide synthase (nNOS) in vitro acting via their receptor, receptor for AGEs. We now hypothesized that this effect may also be important in experimental diabetes in vivo. We aimed to evaluate the role of AGEs on duodenal nNOS expression and the effects of aminoguanidine (a drug that prevents AGE formation) and ALT-711 (AGE cross-link breaker) in experimental diabetes. Streptozotocin induced diabetic rats were randomized to no treatment, treatment with aminoguanidine (1 g L,1 daily through drinking water) at the induction of diabetes, or treatment with ALT-711 (3 mg kg,1 intraperitoneally), beginning at week 6. A fourth group was used as healthy controls. We performed real time polymerase chain reaction, Western blotting and immunohistochemistry to detect nNOS expression. AGE levels were analysed using sandwich ELISA. Diabetes enhanced accumulation of AGEs in serum, an effect that was prevented by treatment with aminoguanidine and ALT-711. Further, diabetic rats showed a significant reduction in duodenal nNOS expression by mRNA, protein and immunocytochemistry, an effect that was prevented by aminoguanidine. ALT-711 had similar effects on nNOS protein and immunohistochemistry (but not on mRNA levels). The generation of AGEs in diabetes results in loss of intestinal nNOS expression and may be responsible for enteric dysfunction in this condition. This study suggests that treatment directed against AGEs may be useful for the treatment of gastrointestinal complications of diabetes. [source]


    Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague-Dawley rats

    THE JOURNAL OF GENE MEDICINE, Issue 5 2005
    Young Mi Park
    Abstract Background Previous studies demonstrating the efficacy of insulin gene therapy have mostly involved use of adenoviral vectors or naked DNA to deliver the insulin gene. However, this procedure may not guarantee long-term insulin production. To improve the performance, we prepared recombinant adeno-associated viral vectors (rAAV) harboring the gene encoding a furin-modified human insulin under the cytomegalovirus (CMV) promoter [rAAV-hPPI(F12)]. Methods Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats were used as a diabetic animal model. The levels of blood glucose, insulin, and HbA1c were measured to test the effect. An intraperitoneal glucose tolerance test was performed to test the capability of blood glucose disposal. Immunohistochemical staining and Northern blot analyses were performed to survey the expression pattern of the therapeutic insulin gene. Results STZ-induced diabetic Sprague-Dawley rats infused via the portal vein with rAAV-hPPI(F12) produced human insulin and after a 6-h fast were normoglycemic for over 90 days post-treatment, whereas diabetic rats treated with recombinant adenoviral vector harboring the hPPI(F12) gene [rAV-hPPI(F12)] were normoglycemic only for days 3 to 13 post-treatment. Insulin mRNA was detected mainly in the liver of the rAAV-hPPI(F12)-treated diabetic rats. The glucose tolerance capability of the rAAV-hPPI(F12)-treated diabetic rats was comparable to that of non-diabetic rats, even without injection of recombinant insulin. Furthermore, blood HbA1c concentrations in rAAV-hPPI(F12)-treated diabetic rats were reduced to almost the normal level. Importantly, studies of rAV or rAAV vector-dependent side effects on the targeted liver strongly suggested that only rAAV treatment caused no side effects. Conclusions These results demonstrate that our rAAV-mediated in vivo insulin gene therapy provides safer maintenance of the insulin gene expression required for long-term and thus more effective blood glycemic control. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Heart changes in 17-day-old fetuses of diabetic ICR (Institute of Cancer Research) mothers: Improvement with maternal immune stimulation

    CONGENITAL ANOMALIES, Issue 1 2009
    Juan Claudio Gutierrez
    ABSTRACT Maternal diabetes mellitus is associated with increased fetal teratogenesis, including cardiovascular defects. Non-specific maternal immune stimulation with Freund's complete adjuvant (FCA) or interferon gamma (IFN,) has been associated with protection against birth malformations. Using a diabetic mouse model, late-gestation fetal heart and great vessel morphology were analyzed. Four groups of mice were used: non-diabetic females as a control group, hyperglycemic females induced by streptozotocin as a diabetic group, and diabetic females injected either with FCA or IFN,. At day 17 of gestation, females were euthanized and one fetus was arbitrarily selected per litter for fixation and sectioning. Treatment-induced changes in cardiac development were assessed from digital images of serial sections taken at standardized levels in the thorax. One-way parametric and non-parametric ANOVA and ordinal logistic regression were performed to compare the difference among groups (P < 0.05). Maternal hyperglycemia altered morphology of the late-gestation fetal mouse heart by causing ventricular chamber dilation, sectional myocardial reduction, and an increase in transversal aortic area. FCA protected the fetal heart from cavitary dilation in diabetic mothers. FCA and IFN, protected the fetal heart against reduction of myocardial area, and ascending thoracic aorta dilation. Consequences of late gestation heart chamber dilation and myocardial reduction are not yet known. Maternal immune stimulation partially protected against these developmental defects by mechanisms that remain unclear. [source]


    DHEA improves impaired activation of Akt and PKC ,/,-GLUT4 pathway in skeletal muscle and improves hyperglycaemia in streptozotocin-induced diabetes rats

    ACTA PHYSIOLOGICA, Issue 3 2009
    K. Sato
    Abstract Aim:, Addition of dehydroepiandrosterone (DHEA) to a cultured skeletal muscle locally synthesizes 5,-dihydrotestosterone (DHT). It induced activation of glucose metabolism-related signalling pathway via protein kinase B (Akt) and protein kinase C zeta/lambda (PKC ,/,)-glucose transporter-4 (GLUT4) proteins. However, such an effect of DHEA in vivo remains unclear. Methods:, Using streptozotocin (STZ)-induced rats with type 1 diabetes mellitus, we tested the hypothesis that a single bout of DHEA injection in the rats improves hyperglycaemia and muscle GLUT4-regulated signalling pathway. After 1 week of STZ injection (55 mg kg,1) with male Wistar rats, fasting glucose concentrations were determined in a blood sample taken from the tail vein. Blood glucose levels were then monitored for 180 min after DHEA or sesame oil (control) was injected (n = 10 for each group). Results:, Blood glucose levels decreased significantly for 30,150 min after 2 mg DHEA injection in the STZ rats. In the skeletal muscle, expression and translocation of GLUT4 protein, phosphorylation of Akt and PKC ,/,, and phosphofructokinase and hexokinase enzyme activities increased significantly by DHEA injection. However, DHEA-induced improvements in Akt and PKC ,/,-GLUT4 pathways were blocked by a DHT inhibitor. Conclusion:, These results suggest that a single bout of DHEA injection can improve hyperglycaemia and activate the glucose metabolism-related signalling pathway via Akt and PKC ,/,-GLUT4 proteins of skeletal muscles in rats. Moreover, these results show that a DHEA-induced increase in muscle glucose uptake and utilization might contribute to improvement in hyperglycaemia in type 1 diabetes mellitus. [source]


    Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation

    DIABETES OBESITY & METABOLISM, Issue 11 2008
    R. R Ortiz-Andrade
    Aim:, The present investigation was designed to determine the in vivo antidiabetic effect of naringenin (NG) in normoglycaemic and diabetic rat models through blood glucose (GLU) measurements following acute and subchronic time periods. Possible modes of action of NG were investigated and its acute toxicity determined. Methods:, Normoglycaemic and non-insulin-dependent diabetes mellitus (NIDDM) rat models were treated for acute and subchronic (5 days) time periods with 50 mg/kg/day of NG. Blood biochemical profiles were determined after 5 days of the treatment in normoglycaemic and NIDDM rats using commercial kits for GLU, triglycerides (TG), total cholesterol (CHOL) and high-density lipoprotein (HDL). In order to elucidate its antidiabetic mode of action, NG was administered intragastrically and an oral glucose tolerance test performed using GLU and sucrose (2 g/kg) as substrates. The inhibitory effect of a single concentration of NG (10 ,M) on 11,-hydroxysteroid dehydrogenase type 1 (11,-HSD1) activity in vitro was determined. Finally, the preclinical safety and tolerability of NG was determined by toxicological evaluation in mice and rats using Organization for Economic Cooperation and Development (OECD) protocols. Results:, Intragastrically administered NG (50 mg/kg) induced a significant decrease in plasma GLU in normoglycaemic and NIDDM rat models (p < 0.05) following acute and subchronic time periods. After 5 days of administration, NG produced significant diminished blood GLU and TG levels in streptozotocin,nicotinamide,induced diabetic rats. The administration of NG to normal rats significantly increased the levels of TG, CHOL and HDL (p < 0.05). NG (5 and 50 mg/kg) induced a total suppression in the increase of plasma GLU levels after administration of substrates (p < 0.01), but NG did not produce inhibition of ,-glucosidase activity in vitro. However, NG (10 ,M) was shown to inhibit 11,-HSD1 activity by 39.49% in a cellular enzyme assay. Finally, NG showed a Medium Lethal Dose LD50 > 5000 mg/kg and ranking at level five based on OECD protocols. Conclusion:, Our findings suggest that NG may exert its antidiabetic effect by extra-pancreatic action and by suppressing carbohydrate absorption from intestine, thereby reducing the postprandial increase in blood GLU levels. [source]


    Cataracts in experimentally diabetic mouse: morphological and apoptotic changes

    DIABETES OBESITY & METABOLISM, Issue 2 2005
    K. R. Hegde
    Aim:, The objective of these investigations was to extend our earlier study on the induction of cataracts in diabetic mice, a low aldose reductase (AR) animal model at morphological level. Previous studies were done primarily at biochemical level. Methods:, Diabetes was induced by intraperitoneal administration of streptozotocin. The lenses isolated after the establishment of diabetes were then subjected to histologic and electron microscopic studies. Results:, Morphological alterations were characterized by shrinkage, elongation and lobulization of the nuclei of the epithelial cells. This was associated with chromatin condensation and its margination. Similar structural aberrations were also observed in a significant number of the subepithelial fibre cells representing defect in fibre maturation. More interestingly, unlike that in other common animal models of diabetic cataract, such abnormally nucleated cells were also found to be prevalent in the posterior subcapsular region, a finding common in human diabetics also. Conclusion:, The present studies further affirm the suitability of the mouse model for a study of cataractogenesis induced by diabetes. Because of the findings reported herein, as well as the known biochemical similarity between the lenses of the mice and humans in respect of AR deficiency, contrary to the rat model where it is very high, use of this species is considered more useful towards understanding the basic aetiology as well as for evaluating the efficacy of various referred nutritional and metabolic antioxidants against such cataracts. [source]


    Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in rats

    DIABETES OBESITY & METABOLISM, Issue 6 2003
    B. Ramachandran
    Aim:, The vanadium complexes so far tested for their insulin mimetic effects are either mono- or binuclear and contain only acyclic ligands. The leaching or hydrolysis of vanadyl ions from these complexes is much easier, and hence they elicit side effects. In the present study, a new binuclear macrocyclic oxovanadium complex was synthesized, and its efficacy was studied on streptozotocin (STZ)-induced diabetic rats over a period of 30 days. Methods:, The insulin mimetic effect of the complex was tested on the blood sugar level in the STZ-diabetic rats and on the activities of the carbohydrate-metabolizing enzymes present in the liver. Results:, Administration of vanadium complex to STZ-induced diabetic rats decreased blood glucose levels from hyperglycaemic to normoglycaemic when compared to diabetic rats. The activity of carbohydrate-metabolizing enzymes such as hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen content were increased to near normal in vanadium complex-administered diabetic rats. The biochemical studies such as assay of blood urea and glutamate oxaloacetate transaminases revealed that the complex is not toxic to the system. Conclusion:, The nontoxic nature of this complex may be due to the presence of the vanadyl ions in an intact macrocyclic form. Further, the vanadyl ions present in the macrocyclic binuclear oxovanadium complex are very close to each other, and this may enhance the insulin mimetic activity by synergic effect. [source]


    Effects of aminoguanidine and tolrestat on the development of ocular and renal structural changes in experimental diabetic rats

    DIABETES OBESITY & METABOLISM, Issue 1 2002
    Ö. Azal
    Studies that researched the role of aminoguanidine and tolestat in the prevention of diabetic retinopathy and nephropathy resulted in conflicting data. We investigated the effects of these agents in the prevention of ocular and renal changes in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ in 30 rats. Ten rats that were not given STZ served as non-diabetic control (Group 1). Ten STZ-diabetic rats that were not given any treatment served as diabetic control (Group 2). Groups 3 and 4 were composed of STZ-induced diabetic rats (10 each) that were given tolrestat and aminoguanidine respectively. Eyes and kidneys were examined at the 24th week under electronmicroscopy. Cataract was observed in all six of the surviving rats in Groups 2 and 4, and in one of 6 surviving rats in group 3. Cataract development was lower in Group 3 than Groups 2 and 4. All retinal samples obtained from group 2 demonstrated a number of structural abnormalities, whereas there were no significant ultrastructural changes in groups 3 and 4. Groups 2 and 3 demonstrated mesangial proliferation and expansion, diffuse glomerular basement membrane (GBM) thickening, and focal GBM thickening in the bulb form. Group 4 demonstrated a normally appearing mesangial space, minimal diffuse but no focal GBM thickening. The urinary albumin excretion (UAE) was lower in Group 4 than the other groups. In conclusion, our results suggest that aminoguanidine may be an important agent for the prevention of renal changes, whereas tolrestat may be effective for the prevention of ocular changes in diabetes mellitus. [source]


    ,-Lipoic acid reduces congenital malformations in the offspring of diabetic mice

    DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 3 2009
    Y. Sugimura
    Abstract Background The mechanism of diabetes-induced congenital malformation remains to be elucidated. It has been reported that ,-lipoic acid (LA) prevents neural tube defects (NTDs) in offsprings of rats with streptozotocin-induced diabetes. Here, we evaluate the protective effect of LA against diabetic embryopathy, including NTDs, cardiovascular malformations (CVMs), and skeletal malformations, in mice. Methods Female mice were rendered hyperglycemic using streptozotocin and then mated with normal male mouse. Pregnant diabetic or non-diabetic mice were treated daily with either LA (100 mg/kg body weight) or saline between gestational days 0 and 18. On day 18, fetuses were examined for congenital malformations. Results Plasma glucose levels on day 18 were not affected by LA treatment. No congenital malformations were observed either in the saline-treated or LA-treated non-diabetic group. In the saline-treated diabetic group, 39% of fetuses had external malformations and 30% had NTDs. In the LA-treated diabetic group, the corresponding proportions were 11 and 8%, respectively. LA treatment also decreased the incidence of CVMs from 30,3% and of skeletal malformations from 29,6%. Conclusions We conclude that LA can reduce NTDs, CVMs and skeletal malformations in the offspring of diabetic mice at term delivery. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Relationship between protective effects of rosiglitazone on endothelium and endogenous nitric oxide synthase inhibitor in streptozotocin-induced diabetic rats and cultured endothelial cells

    DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2007
    Shan Wang
    Abstract Background Previous investigations have indicated that the level of asymmetric dimethylarginine (ADMA) is increased in diabetic patients and animals, and rosiglitazone has a protective effect on the endothelium. In the present study, we tested the relationship between protective effects of rosiglitazone and ADMA in streptozotocin (STZ)-induced diabetic rats and cultured endothelial cells. Methods Blood samples were collected from carotid artery. Vasodilator responses to acetylcholine (ACh) in the isolated aortic rings were measured, and serum concentrations of glucose, lipid, nitrite/nitrate, ADMA and tumour necrosis factor-, (TNF-,) were determined. Cultured endothelial cells were treated with ADMA, and the concentrations of intercellular adhesion molecule (ICAM-1), TNF-,, and the activity of nuclear factor-,B (NF-,B) were determined. Results Vasodilator responses to ACh were decreased markedly and the serum concentrations of TNF-,, nitrite/nitrate and ADMA were increased significantly in diabetic rats. Rosiglitazone (3, 10 or 30 mg/kg) produced a significant reduction of the inhibition of vasodilator responses to ACh, but had no effect on the serum concentrations of glucose, lipid, nitrite/nitrate and ADMA in diabetic rats. ADMA (30 µM) significantly increased the activity of NF-,B and elevated the levels of ICAM-1 and TNF-,, and pre-treatment with rosiglitazone (10 or 30 µM) markedly inhibited the increased activity of NF-,B and reduced the elevated levels of TNF-, and ICAM-1 induced by ADMA in cultured endothelial cells. Conclusions Rosiglitazone improves endothelial function in diabetic rats, which is related to the reduction of the inflammatory response induced by ADMA. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Animal models of diabetes mellitus

    DIABETIC MEDICINE, Issue 4 2005
    D. A. Rees
    Abstract Animal models have been used extensively in diabetes research. Early studies used pancreatectomised dogs to confirm the central role of the pancreas in glucose homeostasis, culminating in the discovery and purification of insulin. Today, animal experimentation is contentious and subject to legal and ethical restrictions that vary throughout the world. Most experiments are carried out on rodents, although some studies are still performed on larger animals. Several toxins, including streptozotocin and alloxan, induce hyperglycaemia in rats and mice. Selective inbreeding has produced several strains of animal that are considered reasonable models of Type 1 diabetes, Type 2 diabetes and related phenotypes such as obesity and insulin resistance. Apart from their use in studying the pathogenesis of the disease and its complications, all new treatments for diabetes, including islet cell transplantation and preventative strategies, are initially investigated in animals. In recent years, molecular biological techniques have produced a large number of new animal models for the study of diabetes, including knock-in, generalized knock-out and tissue-specific knockout mice. [source]


    Aminoguanidine prevents arterial stiffening in a new rat model of type 2 diabetes

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 8 2006
    K.-C. Chang
    Abstract Background, Formation of advanced glycation end-products (AGEs) on collagen within the arterial wall may be responsible for the development of diabetic vascular injury. This study focused on investigating the role of aminoguanidine (AG), an inhibitor of AGE formation, in the prevention of noninsulin-dependent diabetes mellitus (NIDDM)-derived arterial stiffening and cardiac hypertrophy in rats. Materials and methods, The NIDDM was induced in male Wistar rats, which were administered intraperitoneally with 180 mg kg,1 nicotinamide (NA) 30 min before an intravenous injection of 50 mg kg,1 streptozotocin (STZ). After induction of diabetes mellitus type 2, animals receiving daily peritoneal injections with 50 mg kg,1 AG for 8 weeks were compared with the age-matched, untreated, diabetic controls. Results, After exposure to AG, the STZ-NA diabetic rats had improved aortic distensibility, as evidenced by 18·8% reduction of aortic characteristic impedance (P < 0·05). Treatment of the experimental syndrome with AG also resulted in a significant increase in wave transit time (+23·7%, P < 0·05) and a decrease in wave reflection factor (,26·6%, P < 0·05), suggesting that AG may prevent the NIDDM-induced augmentation in systolic load of the left ventricle. Also, the glycation-derived modification on aortic collagen was found to be retarded by AG. The diminished ratio of left ventricular weight to body weight suggested that prevention of the diabetes-related cardiac hypertrophy by AG may correspond to the drug-induced decline in aortic stiffening. Conclusions, Long-term administration of AG to the STZ-NA diabetic rats imparts significant protection against the NIDDM-derived impairment in vascular dynamics, at least partly through inhibition of the AGE accumulation on collagen in the arterial wall. [source]


    Heart specific up-regulation of genes for B-type and C-type natriuretic peptide receptors in diabetic mice

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2006
    C. Christoffersen
    Abstract Background, Diabetes may cause cardiomyopathy characterized by cardiac fibrosis. Recent studies of genetically modified mice have elucidated a role of the natriuretic peptides (NP), type-A and type-B (ANP and BNP), and their common receptor [natriuretic peptide receptor (NPR), type-A] in development of cardiac fibrosis. The role of NP type-C (CNP) and NPR type-B (NPR-B) in the heart is less well established. In this study we examined if diabetes alters heart expression of the genes encoding the NP and its receptors. Materials and methods, Cardiac mRNA was quantified by real-time PCR in diabetic streptozotocin (STZ)-treated and ob/ob- mice and nondiabetic control mice. Results, The ob/ob -mice with type-II diabetes displayed highly significant increases of the cardiac mRNA expression of NPR-B and NPR-C while the expression levels of NPR-A, ANP, BNP, and CNP mRNA were similar in ob/ob -mice and controls. Mice with STZ-induced type-I diabetes also showed an increase of heart NPR-B mRNA expression at 12 weeks, but not at 3, 6 or 9 weeks after STZ-treatment. The ANP and NPR-C mRNA expressions were only altered after 3 weeks, whereas BNP, CNP and NPR-A mRNA expressions were not altered in STZ-treated-mouse hearts at any of the time points. Conclusions, The results show that diabetes in mice confers increased NPR-B gene expression in the heart, suggesting that increased NPR-B signalling may affect development of diabetic cardiomyopathy. [source]


    Arterial stiffening and cardiac hypertrophy in a new rat model of type 2 diabetes

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 1 2006
    K.-C. Chang
    Abstract Background, We determined the effects of NIDDM on haemodynamic parameters describing arterial wall elasticity and cardiac hypertrophy in rats administered streptozotocin (STZ) and nicotinamide (NA), using the aortic impedance analysis. Methods, Male Wistar rats at 2 months were administered intraperitoneally 180 mg kg,1 of NA, 30 min before an intravenous injection of 50 mg kg,1 STZ, to induce type 2 diabetes. The STZ-NA rats were divided into two groups, 4 weeks and 8 weeks after induction of diabetes, and compared with untreated age-matched controls. Pulsatile aortic pressure and flow signals were measured by a high-fidelity pressure sensor and electromagnetic flow probe, respectively, and were then subjected to Fourier transformation for the analysis of aortic input impedance. Results, In each diabetic group, the experimental syndrome was characterized by a moderate and stable hyperglycaemia and a relative deficiency of insulin secretion. However, the 8-week but not the 4-week STZ-NA diabetic rats showed a decrease in cardiac output in the absence of any significant changes in mean aortic pressure, having increased total peripheral resistance. The diabetic syndrome at 8 weeks also contributed to an increase in aortic characteristic impedance, from 1·49 ± 0·33 (mean ± SD) to 1·95 ± 0·28 mmHg s mL,1 (P < 0·05), suggesting a detriment to the aortic distensibility in NIDDM. Meanwhile, the STZ-NA diabetic animals after 8 weeks had an increased wave reflection factor (0·46 ± 0·09 vs. 0·61 ± 0·13, P < 0·05) and decreased wave transit time (25·8 ± 3·8 vs. 20·6 ± 2·8 ms, P < 0·05). Ratio of the left ventricular weight to body weight was also enhanced in the 8-week STZ-NA diabetic rats. Conclusion, The heavy intensity with early return of the pulse wave reflection may augment systolic load of the left ventricle coupled to the arterial system, leading to cardiac hypertrophy in the rats at 8 weeks after following STZ and NA administration. [source]


    Pituitary adenylate cyclase-activating polypeptide attenuates streptozotocin-induced apoptotic death of RIN-m5F cells through regulation of Bcl-2 family protein mRNA expression

    FEBS JOURNAL, Issue 22 2008
    Satomi Onoue
    Oxidative stress, followed by the apoptotic death of pancreatic , cells, is considered to be one of causative agents in the evolution of the type 2 diabetic state; therefore, the protection of , cells can comprise an efficacious strategy for preventing type 2 diabetes. In the present study, RIN-m5F cells (i.e. the rat insulinoma , cell line) were stimulated with streptozotocin, resulting in a time- and concentration-dependent release of lactate dehydrogenase. There appeared to be significant apoptotic cell death after 2 h of treatment with streptozotocin at 10 mm, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining and 2.6-fold activation of cellular caspase-3, an apoptotic enzyme. By contrast, some neuropeptides of the glucagon-secretin family and coenzyme Q10, an endogenous mitochondrial antioxidant, could attenuate streptozotocin cytotoxicity, and especially pituitary adenylate cyclase-activating polypeptide (PACAP), at a concentration of 10,7 m, exhibited 34% attenuation of lactate dehydrogenase release from streptozotocin-treated RIN-m5F cells. Quantitative RT-PCR experiments indicated the inhibitory effect of PACAP on streptozotocin-evoked up-regulation of pro-apoptotic factor (Noxa and Bax) and a 2.3-fold enhancement of Bcl-2 mRNA expression, a pro-survival protein, was also observed after addition of PACAP. The data obtained suggest the anti-apoptotic role of PACAP in streptozotocin-treated RIN-m5F cells through the regulation of pro-apoptotic and pro-survival factors. [source]


    Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes

    FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2010
    Ranganathan Babujanarthanam
    Abstract The present study is an investigation into the role of quercitrin on carbohydrate metabolism in normal and streptozotocin (STZ)-induced diabetic rats. Administration of STZ leads to a significant increase (P < 0.05) in fasting plasma glucose and a decrease in insulin levels. The content of glycogen is significantly decreased (P < 0.05) in liver and muscle, but increased in the kidney. The activity of hexokinase decreased whereas the activities of glucose 6-phosphatase and fructose 1,6-bisphosphatase significantly increased (P < 0.05) in the tissues. Oral administration of quercitrin (30 mg/kg) to diabetic rats for a period of 30 days resulted in significant (P < 0.05) alterations in the parameters studied but not in normal rats. A decrease of plasma glucose and increase in insulin levels were observed along with the restoration of glycogen content and the activities of carbohydrate metabolic enzymes in quercitrin-treated diabetic rats. The histopathological study of the pancreas revealed the protective role of quercitrin. There was an expansion of the islets and decreased fatty infiltrate of the islets in quercitrin treated diabetic rats. In normal rats treated with quercitrin, we could not observe any significant change in all the parameters studied. Combined, these results show that quercitrin plays a positive role in carbohydrate metabolism and antioxidant status in diabetic rats. [source]


    Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain

    FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2007
    Sameer Sharma
    Abstract Diabetic neuropathic pain, an important microvascular complication in diabetes mellitus, has been recognized as one of the most difficult types of pain to treat. The underlying mechanisms of painful symptoms may be closely associated with hyperglycaemia but a lack of the understanding of its proper aetiology, inadequate relief, development of tolerance and potential toxicity of classical antinociceptives warrant the investigation of the newer agents to relieve this pain. The aim of the present study was to explore the antinociceptive effect of resveratrol on diabetic neuropathic pain and to examine its effect on serum tumour necrosis factor- , (TNF- ,) and whole brain nitric oxide (NO) release. Four weeks after a single intraperitoneal injection of streptozotocin (STZ, 200 mg/kg), mice were tested in the tail immersion and hot-plate assays. Diabetic mice exhibited significant hyperalgesia along with increased plasma glucose and decreased body weights when compared with control mice. Daily treatment with resveratrol (5, 10 and 20 mg/kg body weight; p.o.) for 4 weeks starting from the 4th week of STZ injection significantly attenuated thermal hyperalgesia. Resveratrol also decreased the serum TNF- , levels and whole brain NO release in a dose-dependent manner. These results point towards the potential of resveratrol in attenuating diabetic neuropathic pain. [source]


    Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling

    GLIA, Issue 4 2008
    Makoto Tsuda
    Abstract Painful neuropathy is one of the most common complications of diabetes, one hallmark of which is tactile allodynia (pain hypersensitivity to innocuous stimulation). The underlying mechanisms of tactile allodynia are, however, poorly understood. Emerging evidence indicates that, following nerve injury, activated microglia in the spinal cord play a crucial role in tactile allodynia. However, it remains unknown whether spinal microglia are activated under diabetic conditions and whether they contribute to diabetes-induced tactile allodynia. In the present study, using streptozotocin (STZ)-induced diabetic rats that displayed tactile allodynia, we found several morphological changes of activated microglia in the dorsal horn. These included increases in Iba1 and OX-42 labeling (markers of microglia), hypertrophic morphology, the thickness and the retraction of processes, and in the number of activated microglia cells. Furthermore, in the dorsal horn of STZ diabetic rats, extracellular signal-regulated protein kinase (ERK) and an upstream kinase, Src-family kinase (SFK), both of which are implicated in microglial functions, were activated exclusively in microglia. Moreover, inhibition of ERK phosphorylation in the dorsal horn by intrathecal administration of U0126, an inhibitor of ERK activation, produced a striking alleviation of existing, long-term tactile allodynia of diabetic rats. We also found that a single administration of U0126 reduced the expression of allodynia. Together, these results suggest that activated dorsal horn microglia may be a crucial component of diabetes-induced tactile allodynia, mediated, in part, by the ERK signaling pathway. Thus, inhibiting microglia activation in the dorsal horn may represent a therapeutic strategy for treating diabetic tactile allodynia. © 2008 Wiley-Liss, Inc. [source]


    Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic rat

    INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 6 2007
    B. Shrilatha
    Summary Oxidative stress is implicated to play a vital role in the pathogenesis of various diabetic complications. While reproductive dysfunction is a well recognized consequence of diabetes mellitus, the underlying mechanisms are poorly understood. The present study aims to obtain insights into the incidence, extent and progression of oxidative impairments in testis and epididymal sperm (ES) in streptozotocin (STZ)-induced diabetic rat during early and progressive phase. Adult rats (CFT-Wistar strain) rendered diabetic by an acute dose of STZ (60 mg/kg bw, i.p.) were examined for induction of hyperglycaemia at 72 h, followed by the assessment of oxidative impairments in testis and ES over a 6-week period. Oxidative damage was ascertained by measuring the malondialdehyde levels, reactive oxygen species (ROS) generation, alterations in antioxidant defences and extent of protein oxidation. STZ induced a significant (2.5-fold) increase in blood glucose levels. In diabetic rats, both testis and ES showed enhanced status of lipid peroxidation measured as increased TBARS and ROS from week 2 onwards. These impairments in testis were consistent, progressive and accompanied by marked alterations in antioxidant defences and elevated protein carbonyls. Varying degree of reduction in the specific activities of antioxidant enzymes was evident in testis and ES, while the activity of glutathione- S -transferase (GST) was significantly elevated. Reduced glutathione (GSH) and vitamin E levels were consistently reduced in testis. Lipid dysmetabolism measured in terms of increased cholesterol, triglycerides and phospholipids was evident only beyond week 2 in diabetic testis. Taken together, these results indicate that the testis and ES are indeed subjected to significant oxidative stress in the STZ-diabetic rat both during early as well as progressive phase. It is hypothesized that oxidative impairments in testis which develop over time may at least in part contribute towards the development of testicular dysfunction eventually leading to testicular degeneration which culminates in reduced fertility during the progressive phase of STZ-induced diabetes in adult rats. [source]


    Smad3 as a mediator of the fibrotic response

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 2 2004
    Kathleen C. Flanders
    Summary Transforming growth factor-, (TGF-,) plays a central role in fibrosis, contributing to the influx and activation of inflammatory cells, the epithelial to mesenchymal transdifferentiation (EMT) of cells and the influx of fibroblasts and their subsequent elaboration of extracellular matrix. TGF-, signals through transmembrane receptor serine/threonine kinases to activate novel signalling intermediates called Smad proteins, which modulate the transcription of target genes. The use of mice with a targeted deletion of Smad3, one of the two homologous proteins which signals from TGF-,/activin, shows that most of the pro-fibrotic activities of TGF-, are mediated by Smad3. Smad3 null inflammatory cells and fibroblasts do not respond to the chemotactic effects of TGF-, and do not autoinduce TGF-,. The loss of Smad3 also interferes with TGF-,-mediated induction of EMT and genes for collagens, plasminogen activator inhibitor-1 and the tissue inhibitor of metalloprotease-1. Smad3 null mice are resistant to radiation-induced cutaneous fibrosis, bleomycin-induced pulmonary fibrosis, carbon tetrachloride-induced hepatic fibrosis as well as glomerular fibrosis induced by induction of type 1 diabetes with streptozotocin. In fibrotic conditions that are induced by EMT, such as proliferative vitreoretinopathy, ocular capsule injury and glomerulosclerosis resulting from unilateral ureteral obstruction, Smad3 null mice also show an abrogated fibrotic response. Animal models of scleroderma, cystic fibrosis and cirrhosis implicate involvement of Smad3 in the observed fibrosis. Additionally, inhibition of Smad3 by overexpression of the inhibitory Smad7 protein or by treatment with the small molecule, halofuginone, dramatically reduces responses in animal models of kidney, lung, liver and radiation-induced fibrosis. Small moleucule inhibitors of Smad3 may have tremendous clinical potential in the treatment of pathological fibrotic diseases. [source]


    Effect of urothelium on bladder contractility in diabetic rats

    INTERNATIONAL JOURNAL OF UROLOGY, Issue 7 2005
    MURAT KO
    Abstract Aim: It is known that physiopathological changes in diabetes affect the function of the bladder. In this study, we aimed to demonstrate the possible effects of diabetes on the urothelium during this physiopathological process. Methods: Diabetes was induced in rats by tail vein injection of 35 mg/kg streptozotocin. Eight weeks later, intact and denuded bladder strips were prepared from these rats. Electrical field stimulation (EFS; 0.5,32 Hz), carbachol (10,8,10,3 mol/L; cumulative dosage-response curves) and KCl (120 mmol/L) were used for the evaluation of the contractile responses. All responses were expressed as mg tension developed per mg of bladder tissue. Weights of rats and of their bladders, blood glucose levels, and frequency- and concentration,response curves were compared using anova, the paired t -test and the independent t -test. Differences were considered significant at P < 0.05. Results: Although no differences related to the weight of bladders of the control and diabetic groups were observed, there were differences in blood glucose levels and body weights between the two groups. Similarly, although there were no differences between the data obtained with EFS and KCl from tissues with intact and denuded strips in the control group, carbachol responses significantly differed between intact and denuded strips in the non-diabetic group. These differences were not observed in the diabetic group. In the control groups, in the presence of additional strips with intact urothelium placed in the medium containing denuded tissue, the differences in contractile responses between the intact control strip and the denuded strip disappeared. Conclusions: Diabetes possibly changes the interaction between the relaxant factors that are released from urothelium and muscarinic stimulation, but these interactions are not completely understood yet. Consequently, the response of the bladder to contractile stimulants is also affected. Further studies are required to reveal the mechanism by which diabetes influences the urothelium. [source]


    Antihyperlipidemic activity of 3-hydroxymethyl xylitol, a novel antidiabetic compound isolated from Casearia esculenta (Roxb.) root, in streptozotocin-diabetic rats

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2010
    Govindasamy Chandramohan
    Abstract Casearia esculenta root (Roxb.) is widely used in traditional system of medicine to treat diabetes in India. An active compound, 3-hydroxymethyl xylitol (3-HMX), has been isolated, and its optimum dose has been determined in a short duration study and patented. In addition, the long-term effect of 3-HMX in type 2 diabetic rats on carbohydrate metabolism was investigated, and its antihyperglycemic effect was shown previously (Chandramohan et al., Eur J Pharmacol 2008;590:437,443). In this study we investigated the effect of 3-HMX on plasma and tissue lipid profiles in streptozotocin-induced diabetic rats. Diabetes was induced in adult male albino rats of the Wistar strain, weighing 180,200 g, by administration of streptozotocin (40 mg/kg of body weight) intraperitoneally. The normal and diabetic rats were treated with 3-HMX (40 mg/kg BW/day) for 45 days. The levels of total cholesterol, triglycerides, free fatty acids, and phospholipids were assayed in the plasma besides lipoprotein-cholesterol (high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and very low density lipoprotein-cholesterol (VLDL-C)) and tissues (liver, kidney, heart, and brain). Total cholesterol, triglyceride, free fatty acid, and phospholipid (LDL-C and VLDL-C in plasma only) levels increased in plasma and tissues significantly, whereas plasma HDL-C significantly decreased in diabetic rats. Treatment with 3-HMX or glibenclamide reversed the above-mentioned changes and improved toward normalcy. Histological study of liver also confirmed the biochemical findings. Thus administration of 3-HMX is able to reduce hyperglycemia and hyperlipidemia related to the risk of diabetes mellitus. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:95,101, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20317 [source]


    Diminished Bone Formation During Diabetic Fracture Healing is Related to the Premature Resorption of Cartilage Associated With Increased Osteoclast Activity,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2007
    Rayyan A Kayal
    Abstract Histological and molecular analysis of fracture healing in normal and diabetic animals showed significantly enhanced removal of cartilage in diabetic animals. Increased cartilage turnover was associated with elevated osteoclast numbers, a higher expression of genes that promote osteoclastogenesis, and diminished primary bone formation. Introduction: Diminished bone formation, an increased incidence of nonunions, and delayed fracture healing have been observed in animal models and in patients with diabetes. Fracture healing is characterized by the formation of a stabilizing callus in which cartilage is formed and then resorbed and replaced by bone. To gain insight into how diabetes affects fracture healing, studies were carried out focusing on the impact of diabetes on the transition from cartilage to bone. Materials and Methods: A low-dose treatment protocol of streptozotocin in CD-1 mice was used to induce a type 1 diabetic condition. After mice were hyperglycemic for 3 weeks, controlled closed simple transverse fractures of the tibia were induced and fixed by intramedullary pins. Histomorphometric analysis of the tibias obtained 12, 16, and 22 days after fracture was performed across the fracture callus at 0.5 mm proximal and distal increments using computer-assisted image analysis. Another group of 16-day samples were examined by ,CT. RNA was isolated from a separate set of animals, and the expression of genes that reflect the formation and removal of cartilage and bone was measured by real-time PCR. Results: Molecular analysis of collagen types II and × mRNA expression showed that cartilage formation was the same during the initial period of callus formation. Histomorphometric analysis of day 12 fracture calluses showed that callus size and cartilage area were also similar in normoglycemic and diabetic mice. In contrast, on day 16, callus size, cartilage tissue, and new bone area were 2.0-, 4.4-, and 1.5-fold larger, respectively, in the normoglycemic compared with the diabetic group (p < 0.05). Analysis of ,CT images indicated that the bone volume in the normoglycemic animals was 38% larger than in diabetic animals. There were 78% more osteoclasts in the diabetic group compared with the normoglycemic group (p < 0.05) on day 16, consistent with the reduction in cartilage. Real-time PCR showed significantly elevated levels of mRNA expression for TNF-,, macrophage-colony stimulating factor, RANKL, and vascular endothelial growth factor-A in the diabetic group. Similarly, the mRNA encoding ADAMTS 4 and 5, major aggrecanases that degrade cartilage, was also elevated in diabetic animals. Conclusions: These results suggest that impaired fracture healing in diabetes is characterized by increased rates of cartilage resorption. This premature loss of cartilage leads to a reduction in callus size and contributes to decreased bone formation and mechanical strength frequently reported in diabetic fracture healing. [source]


    Amylin and Bone Metabolism in Streptozotocin-Induced Diabetic Rats

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2001
    Marie-Noëlle Horcajada-Molteni
    Abstract Amylin (AMY) is a 37 amino acid peptide cosecreted with insulin (INS) by pancreatic ,-cells and absent in type 1 diabetes, a condition frequently associated with osteopenia. AMY binds to calcitonin receptors, lowers plasma calcium concentration, inhibits osteoclast activity, and stimulates osteoblasts. In the present study, we examined the effects of AMY replacement on bone loss in a streptozotocin (STZ)-induced rodent model type 1 diabetes. Of 50 male Wistar rats studied, 40 were made diabetic with intraperitoneal STZ (50 mg/kg; plasma glucose concentrations >11 mM within 5 days). Ten nondiabetic control (CONT) rats received citrate buffer without STZ. Diabetic rats were divided into four groups (n = 10/group) and injected subcutaneously with rat AMY (45 mg/kg), INS (12 U/kg), both (same doses), or saline (STZ; diabetic controls) once per day. After 40 days of treatment and five 24-h periods of urine collection for deoxypyridinoline (DPD), the animals were killed, blood was sampled, and femurs were removed. The left femur was tested for mechanical resistance (three-point bending). The right femur was tested for total, diaphyseal (cortical bone), and metaphyseal (trabecular bone) bone densities using dual-energy X-ray absorptiometry (DXA). Bone was ashed to determine total bone mineral (calcium) content. None of the treatments had any significant effect on femoral length and diameter. Untreated diabetic rats (STZ; 145 ± 7N) had lower bone strength than did nondiabetic CONT (164 ± 38; p < 0.05). Total bone mineral density (BMD; g/cm2) was significantly lower in STZ (0. 2523 ± 0. 0076) than in CONT (0.2826 ± 0.0055), as were metaphyseal and diaphyseal densities. Diabetic rats treated with AMY, INS, or both had bone strengths and bone densities that were indistinguishable from those in nondiabetic CONT. Changes in bone mineral content paralleled those for total BMD (T-BMD). Plasma osteocalcin (OC) concentration, a marker for osteoblastic activity, was markedly lower in untreated diabetic rats (7. 6 ± 0. 9 ng/ml); p < 0. 05) than in nondiabetic CONT (29. 8 ± 1. 7; p < 0. 05) or than in AMY (20. 1 ± 0. 7; p < 0. 05). Urinary DPD excretion, a marker for bone resorption, was similar in untreated and AMY-treated diabetic rats (35.0 ± 3.1 vs. 35.1 ± 4.4 nmol/mmol creatinine), intermediate in rats treated with INS (49.9 ± 2.7), and normalized in diabetic rats treated with both agents (58.8 ± 8.9 vs. 63.2 ± 4.5 in CONT). Thus, in our STZ rat model of diabetic osteopenia, addition of AMY improved bone indices apparently by both inhibiting resorption and stimulating bone formation. [source]


    Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009
    Mohanraj Rajesh
    Abstract In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure,volume system 10 weeks after established diabetes. Myocardial XO, p22phox, p40phox, p47phox, gp91phox, iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-,, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22phox, p40phox, p47phox, p91phox mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-,, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction. [source]


    Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
    Claudia Kusmic
    Abstract Previous studies related impaired myocardial microcirculation in diabetes to oxidative stress and endothelial dysfunction. Thus, this study was aimed to determine the effect of up-regulating pAMPK-pAKT signaling on coronary microvascular reactivity in the isolated heart of diabetic mice. We measured coronary resistance in wild-type and streptozotocin (STZ)-treated mice, during perfusion pressure changes. Glucose, insulin, and adiponectin levels in plasma and superoxide formation, NOx levels and heme oxygenase (HO) activity in myocardial tissue were determined. In addition, the expression of HO-1, 3-nitrotyrosine, pLKB1, pAMPK, pAKT, and peNOS proteins in control and diabetic hearts were measured. Coronary response to changes in perfusion pressure diverged from control in a time-dependent manner following STZ administration. The responses observed at 28 weeks of diabetes (the maximum time examined) were mimicked by L-NAME administration to control animals and were associated with a decrease in serum adiponectin and myocardial pLKB1, pAMPK, pAKT, and pGSK-3 expression. Cobalt protoporphyrin treatment to induce HO-1 expression reversed the microvascular reactivity seen in diabetes towards that of controls. Up-regulation of HO-1 was associated with an increase in adiponectin, pLKB1, pAKT, pAMPK, pGSK-3, and peNOS levels and a decrease in myocardial superoxide and 3-nitrotyrosine levels. In the present study we describe the time course of microvascular functional changes during the development of diabetes and the existence of a unique relationship between the levels of serum adiponectin, pLKB1, pAKT, and pAMPK activation in diabetic hearts. The restoration of microvascular function suggests a new therapeutic approach to even advanced cardiac microvascular derangement in diabetes. J. Cell. Biochem. 109: 1033,1044, 2010. © 2010 Wiley-Liss, Inc. [source]


    Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
    William C. Cho
    Abstract Diabetes mellitus (DM) is a chronic progressive disease that often results in microvascular and macrovascular complications, yet its pathogenesis is not clear. Automated proteomic technology, coupled with powerful bioinformatics and statistical tools, can provide new insights into the molecular alterations implicated in DM. Following our previous findings of redox changes in the eye and aorta of diabetic rats, as well as the activities of different antioxidant enzymes during the development of DM, this study is further launched to find potential biomarkers by comparing the serum and tissue samples of 26 diabetic rats (8 weeks after streptozotocin [STZ] administration) with 29 normal controls using surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology. Eight potential biomarkers were found in the serum, one potential biomarker was found in the kidney and eye, respectively, whereas three potential biomarkers were discovered in the aorta. One of the serum biomarker candidates was found to match the C-reactive protein (CRP) in the Swiss-Prot knowledgebase. Further validation has been conducted by ELISA kit to confirm the role of CRP during the development of DM. To conclude, the increased level of CRP in diabetic serum demonstrated in this study indicates that the development of DM is associated with inflammation. This is also the first report demonstrating that some potential lysate biomarkers in the kidney, eye, and aorta may be involved in the development of diabetes and its complications. Further identification and evaluation of these potential biomarkers will help unravel the underlying mechanisms of the disease. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source]


    Role of O -linked ,- N -acetylglucosamine modification in the subcellular distribution of alpha4 phosphoprotein and Sp1 in rat lymphoma cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2005
    Shauna M. Dauphinee
    Abstract The mTOR alpha4 phosphoprotein is a prolactin (PRL)-downregulated gene product that is found in the nucleus of PRL-dependent rat Nb2 lymphoma cells. Alpha4 lacks a nuclear localization signal (NLS) and the mechanism of its nuclear targeting is unknown. Post-translational modification by O -linked ,- N -acetylglucosamine (O -GlcNAc) moieties has been implicated in the nuclear transport of some proteins, including transcription factor Sp1. The nucleocytoplasmic enzymes O -,- N -acetylglucosaminyltransferase (OGT) and O -,- N -acetylglucosaminidase (O -GlcNAcase) adds or remove O -GlcNAc moieties, respectively. If O -GlcNac moieties contribute to the nuclear targeting of alpha4, a decrease in O -GlcNAcylation (e.g., by inhibition of OGT) may redistribute alpha4 to the cytosol. The present study showed that alpha4 and Sp1 were both O -GlcNAcylated in quiescent and PRL-treated Nb2 cells. PRL alone or PRL,+,streptozotocin (STZ; an O -GlcNAcase inhibitor) significantly (P,,,0.05) increased the O -GlcNAc/alpha4 ratio above that in control quiescent cells. However, PRL,+,alloxan (ALX; an OGT inhibitor) or ALX alone did not decrease O -GlcNAcylation of alpha4 below that of controls and alpha4 remained nuclear. In comparison, PRL (±ALX/STZ) greatly increased Sp1 protein levels, caused a significant decrease in the GlcNAc/Sp1 ratio (P,,,0.05, n,=,3) as compared to controls and partially redistributed Sp1 to the cytosol. Finally, a 50% downregulation of OGT gene expression by small interfering RNA (i.e., siOGT) partially redistributed both alpha4 and Sp1 to the cytosol. The alpha4 protein partner PP2Ac had no detectable O -GlcNAc moieties and its nuclear distribution was not affected by siOGT. In summary, alpha4 and Sp1 contained O -GlcNAc moieties, which contributed to their nuclear targeting in Nb2 cells. © 2005 Wiley-Liss, Inc. [source]


    EFFECT OF BUTYRIC ACID SUPPLEMENTATION ON SERUM AND RENAL ANTIOXIDANT ENZYME ACTIVITIES IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

    JOURNAL OF FOOD BIOCHEMISTRY, Issue 2010
    A. PUNEETH KUMAR
    ABSTRACT Reactive oxygen metabolites, which are constant products of normal aerobic cell metabolism, play a key role in worsening the pathophysiological complications of diabetes. The present investigation was aimed at understanding the effect of butyric acid supplementation along with wheatbran and guar gum on serum and renal antioxidant enzyme activities and lipid peroxidation in streptozotocin (STZ)-induced diabetic rats. Activities of superoxide dismutase, catalase, glutathione peroxidase were evaluated in serum and kidney of control and experimental rats. Results clearly showed that the altered activity of the enzymes during diabetes was significantly ameliorated by butyric acid (500 mg/kg body weight/day) supplementation compared with other experimental groups. Further, the increased lipid peroxidation in serum and kidney of diabetic rats was also significantly reduced in butyric acid-supplemented diabetic rats. The study led us to conclude that butyric acid exert antioxidant property, thereby minimizing oxidative stress induced diabetes and its related complications. PRACTICAL APPLICATIONS Butyric acid , a product of dietary fiber fermentation , is a four-carbon fatty acid, which has wide range of application in disease management. This product is involved in various physiological functions of body like cell differentiation, apoptosis, colonic homeostasis, histone acetylation, etc. It is also known to decrease the incidence of bowel cancer and some of its analogues are shown to selectively improve glucose-stimulated insulin release and glucose tolerance in both normal and diabetic rats. This study aims to evaluate the beneficial effects of butyric acid supplementation on oxidative stress-induced diabetic complications in rats. [source]