Home About us Contact | |||
Strength Decreases (strength + decrease)
Selected AbstractsStrength Properties of Poled Lead Zirconate Titanate Subjected to Biaxial Flexural Loading in High Electric FieldJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2010Hong Wang The mechanical strength of poled lead zirconate titanate (PZT) has been studied using ball-on-ring (BoR) biaxial flexure tests with a high electric field applied concurrently. Both the as-received and the aged PZT specimens were tested. The Weibull plot and a 95% confidence ratio ring were used to characterize the responses of mechanical strength under various electric loading conditions. A fractographical study has been conducted at the same time, and the fracture origins or strength-limiting flaws of tested PZT specimens have been identified and characterized accordingly. The fracture toughness was further estimated to correlate with the obtained fracture stresses and flaws. It has been observed that electric field affects the mechanical strength of poled PZT, and the degree of the effect depends on the sign and magnitude of the applied electric field. Within the examined electric field range of ,3 to +3 times the coercive field, an increasing electric field resulted in a rapid strength decrease and a sharp increase with the turning point around the negative coercive field. Surface-located volume-distributed flaws were identified to be strength limiting for this PZT material. Variations of the mechanical strength with the electric field were believed to be related to the domain switching and amount of switchable domains. An aging effect on the mechanical strength of poled PZT could be significant, especially in the OC condition. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators. [source] Tectonic Fractures in Tight Gas Sandstones of the Upper Triassic Xujiahe Formation in the Western Sichuan Basin, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010ZENG Lianbo Abstract: The western Sichuan Basin, which is located at the front of the Longmen Mountains in the west of Sichuan Province, China, is a foreland basin formed in the Late Triassic. The Upper Triassic Xujiahe Formation is a tight gas sandstone reservoir with low porosity and ultra-low permeability, whose gas accumulation and production are controlled by well-developed fracture zones. There are mainly three types of fractures developed in the Upper Triassic tight gas sandstones, namely tectonic fractures, diagenetic fractures and overpressure-related fractures, of which high-angle tectonic fractures are the most important. The tectonic fractures can be classified into four sets, i.e., N-S-, NE-, E-W- and NW-striking fractures. In addition, there are a number of approximately horizontal shear fractures in some of the medium-grained sandstones and grit stones nearby the thrusts or slip layers. Tectonic fractures were mainly formed at the end of the Triassic, the end of the Cretaceous and the end of the Neogene-Early Pleistocene. The development degree of tectonic fractures was controlled by lithology, thickness, structure, stress and fluid pressure. Overpressure makes not only the rock shear strength decrease, but also the stress state change from compression to tension. Thus, tensional fractures can be formed in fold-thrust belts. Tectonic fractures are mainly developed along the NE- and N-S-striking structural belts, and are the important storage space and the principal flow channels in the tight gas sandstone. The porosity of fractures here is 28.4% of the gross reservoir porosity, and the permeability of fractures being two or three grades higher than that of the matrix pores. Four sets of high-angle tectonic fractures and horizontal shear fractures formed a good network system and controlled the distribution and production of gas in the tight sandstones. [source] Longitudinal Dust Lattice Shock Wave in a Strongly Coupled Complex Dusty PlasmaCONTRIBUTIONS TO PLASMA PHYSICS, Issue 8 2008S. Ghosh Abstract The effect of hydrodynamical damping that arises due to the irreversible processes within the system have been studied on 1D nonlinear longitudinal dust lattice wave (LDLW) in homogeneous strongly coupled complex (dusty) plasma. Analytical investigation shows that the nonlinear wave is governed by Korteweg-de Vries Burgers' equation. This hydrodynamical damping induced dissipative effect is responsible for the Burgers' term that causes the generation of shock wave in dusty plasma crystal. Numerical investigation on the basis of the glow-discharge plasma parameters reveal that LDLW exhibits both oscillatory and monotonic shock. The shock is compressive in nature and its strength decreases (increases) with the increase of the shielding parameter , (characteristic length L). The effects of dust-neutral collision are also discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Effect of Hydrogen on Fatigue Strength of High-Strength Steels in the VHCF Regime,ADVANCED ENGINEERING MATERIALS, Issue 7 2009Yongde Li Diffusible hydrogen or non-diffusible hydrogen can decrease the fatigue strength of high-strength steels. The hydrogen influence factor f(C) describes the hydrogen damage level of fatigue strength. Fatigue strength decreases with increasing non-diffusible hydrogen content in the range 1 ppm,<,Ci,<,3.0,ppm. Fatigue strength decreases significantly with increasing diffusible hydrogen content in the range 1 ppm,<,Cr,<,3.0,ppm, but shows almost no obvious change in the range 3.0 ppm,<,Cr,<,10.0,ppm. [source] The influence of porosity on the fatigue strength of high-pressure die cast aluminiumFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2006J. LINDER ABSTRACT Aluminium is a lightweight material with high strength and good corrosion resistance among other beneficial properties. Thanks to these properties, aluminium is more extensively used in the vehicle industry. High-pressure die casting of aluminium is a manufacturing process that makes it possible to attain complex, multi-functional components with near-net shape. However, there is one disadvantage of such castings, that is, the presence of various defects such as porosity and its effect on mechanical properties. The aim of this work was to investigate the influence of porosity on the fatigue strength of high-pressure die cast aluminium. The objective was to derive the influence of defect size with respect to the fatigue load, and to generate a model for fatigue life in terms of a Kitagawa diagram. The aluminium alloy used in this study is comparable to AlSi9Cu3. Specimens were examined in X-ray prior to fatigue loading and classified with respect to porosity level and eventually fatigue tested in bending at the load ratio, R, equal to ,1. Two different specimen types with a stress concentration factor of 1.05 and 2.25 have been tested. It has been shown that the fatigue strength decreases by up to 25% as the amount of porosity of the specimen is increased. The results further showed that the influence of defects was less for the specimen type with the higher stress concentration. This is believed to be an effect of a smaller volume being exposed to the maximum stress for this specimen type. A Kitagawa diagram was constructed on the basis of the test results and fracture mechanics calculations. A value of 1.4 Mpa m1/2 was used for the so-called stress intensity threshold range. This analysis predicts that defects larger than 0.06 mm2 will reduce the fatigue strength at 5 × 106 cycles for the aluminium AlSi9Cu3 material tested. [source] Fatigue strength of Inconel 718 at elevated temperaturesFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 3 2000Kawagoishi The strength of Inconel 718 under rotary bending fatigue is investigated at room temperature, 300, 500 and 600 °C in air. It is found that in the long-life region, the fatigue strength of a plain specimen is much higher at elevated temperatures than at room temperature, though the static strength decreases with the increase in temperature. The effect of temperature on the fatigue strength is examined in terms of the initiation and early growth behaviour of a small crack. The results are discussed in relation to the competition between the softening of the nickel matrix (, phase) and the surface oxidation at elevated temperatures. [source] Structural properties and mechanical behavior of injection molded composites of polypropylene and sisal fiberPOLYMER COMPOSITES, Issue 3 2002X. L. Xie Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo-polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of ,-form PP crystals in the PP/SF composites and produces little change in the inter-planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110),, L(040),, L(130), and L(300), of the , and ,-form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of ,-form PP crystals and the pull-out of sisal fibers from the PP matrix, both factors retard crack growth. [source] An interpretation of rapid changes in the magnetic field associated with solar flaresASTRONOMISCHE NACHRICHTEN, Issue 8 2008I.V. Oreshina Abstract The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self-consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center-of-mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X-class flares, almost 50% events show such changes. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |