Distribution by Scientific Domains

Terms modified by Streamflow

  • streamflow data
  • streamflow forecast
  • streamflow record
  • streamflow response
  • streamflow variability

  • Selected Abstracts


    David M. Coley
    ABSTRACT: The Peace River at Arcadia, Florida, is a municipal water supply supplement for southwestern Florida. Consequently, probabilities of encountering low flows during the dry season are of critical importance. Since the association between Pacific Ocean sea surface temperatures (SSTs) and seasonal streamflow variability in the southeastern United States is well documented, it is reasonable to generate forecasts based on this information. Here, employing historic records of minimum, mean, and maximum flows during winter (JFM) and spring (AMJ), upper and lower terciles define "above normal,""normal," and "below normal" levels of each variable. A probability distribution model describes the likelihood of these seasonal variables conditioned upon Pacific SSTs from the previous summer (JAS). Model calibration is based upon 40 (of 50) years of record employing stratified random sampling to ensure equal representation from each decade. The model is validated against the remaining 10 samples and the process repeated 100 times. Each conditional probability distribution yields varying probabilities of observing flow variables within defined categories. Generally, a warm (cold) Pacific is associated with higher (lower) flows. To test model skill, the forecast is constrained to be the most probable category in each calibration year, with significance tested by chi-square frequency tables. For all variables, the tables indicate high levels of association between forecast and observed terciles and forecast skill, particularly during winter. During spring the pattern is less clear, possibly due to the variable starting date of the summer rainy season. This simple technique suggests that Pacific SSTs provide a good forecast of low flows. [source]


    Roslyn A. Case
    ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113-year, 522-year, and 325-year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record. [source]

    Downscaling simulations of future global climate with application to hydrologic modelling

    Eric P. Salathé Jr
    Abstract This study approaches the problem of downscaling global climate model simulations with an emphasis on validating and selecting global models. The downscaling method makes minimal, physically based corrections to the global simulation while preserving much of the statistics of interannual variability in the climate model. Differences among the downscaled results for simulations of present-day climate form a basis for model evaluation. The downscaled results are used to simulate streamflow in the Yakima River, a mountainous basin in Washington, USA, to illustrate how model differences affect streamflow simulations. The downscaling is applied to the output of three models (ECHAM4, HADCM3, and NCAR-PCM) for simulations of historic conditions (1900,2000) and two future emissions scenarios (A2 and B2 for 2000,2100) from the IPCC assessment. The ECHAM4 simulation closely reproduces the observed statistics of temperature and precipitation for the 42 year period 1949,90. Streamflow computed from this climate simulation likewise produces similar statistics to streamflow computed from the observed data. Downscaled climate-change scenarios from these models are examined in light of the differences in the present-day simulations. Streamflows simulated from the ECHAM4 results show the greatest sensitivity to climate change, with the peak in summertime flow occurring 2 months earlier by the end of the 21st century. Copyright © 2005 Royal Meteorological Society. [source]

    Sensitivity of Stream flow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed,

    Zhaohua Dai
    Dai, Zhaohua, Carl C. Trettin, Changsheng Li, Devendra M. Amatya, Ge Sun, and Harbin Li, 2010. Sensitivity of Streamflow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed. Journal of the American Water Resources Association (JAWRA) 1,13. DOI: 10.1111/j.1752-1688.2010.00474.x Abstract:, A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for predicting the streamflow and water table dynamics for this watershed with an acceptable model efficiency (E > 0.5 for daily streamflow and >0.75 for monthly streamflow). The simulation results from changing temperature and precipitation scenarios indicate that climate change influences both streamflow and water table in the forested watershed. Compared to current climate conditions, the annual average streamflow increased or decreased by 2.4% with one percentage increase or decrease in precipitation; a quadratic polynomial relationship between changes in water table depth (cm) and precipitation (%) was found. The annual average water table depth and annual average streamflow linearly decreased with an increase in temperature within the range of temperature change scenarios (0-6°C). The simulation results from the potential climate change scenarios indicate that future climate change will substantially impact the hydrological regime of upland and wetland forests on the coastal plain with corresponding implications to altered ecosystem functions that are dependent on water. [source]

    MODIS Biophysical States and NEXRAD Precipitation in a Statistical Evaluation of Antecedent Moisture Condition and Streamflow,

    B. P. Weissling
    Abstract:, The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south-central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight-day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log-transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base-flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash-Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log-space) for the full 15-month period, ,0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ,32%. The contribution of parameter uncertainties to model discrepancy was evaluated. [source]

    Using SWAT to Model Streamflow in Two River Basins With Ground and Satellite Precipitation Data,

    Kenneth J. Tobin
    Abstract:, Both ground rain gauge and remotely sensed precipitation (Next Generation Weather Radar , NEXRAD Stage III) data have been used to support spatially distributed hydrological modeling. This study is unique in that it utilizes and compares the performance of National Weather Service (NWS) rain gauge, NEXRAD Stage III, and Tropical Rainfall Measurement Mission (TRMM) 3B42 (Version 6) data for the hydrological modeling of the Middle Nueces River Watershed in South Texas and Middle Rio Grande Watershed in South Texas and northern Mexico. The hydrologic model chosen for this study is the Soil and Water Assessment Tool (SWAT), which is a comprehensive, physical-based tool that models watershed hydrology and water quality within stream reaches. Minor adjustments to selected model parameters were applied to make parameter values more realistic based on results from previous studies. In both watersheds, NEXRAD Stage III data yields results with low mass balance error between simulated and actual streamflow (±13%) and high monthly Nash-Sutcliffe efficiency coefficients (NS > 0.60) for both calibration (July 1, 2003 to December 31, 2006) and validation (2007) periods. In the Middle Rio Grande Watershed NEXRAD Stage III data also yield robust daily results (time averaged over a three-day period) with NS values of (0.60-0.88). TRMM 3B42 data generate simulations for the Middle Rio Grande Watershed of variable qualtiy (MBE = +13 to ,16%; NS = 0.38-0.94; RMSE = 0.07-0.65), but greatly overestimates streamflow during the calibration period in the Middle Nueces Watershed. During the calibration period use of NWS rain gauge data does not generate acceptable simulations in both watersheds. Significantly, our study is the first to successfully demonstrate the utility of satellite-estimated precipitation (TRMM 3B42) in supporting hydrologic modeling with SWAT; thereby, potentially extending the realm (between 50°N and 50°S) where remotely sensed precipitation data can support hydrologic modeling outside of regions that have modern, ground-based radar networks (i.e., much of the third world). [source]

    The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining Base Flow,

    Thomas C. Winter
    Abstract:, The volume and sustainability of streamflow from headwaters to downstream reaches commonly depend on contributions from ground water. Streams that begin in extensive aquifers generally have a stable point of origin and substantial discharge in their headwaters. In contrast, streams that begin as discharge from rocks or sediments having low permeability have a point of origin that moves up and down the channel seasonally, have small incipient discharge, and commonly go dry. Nearly all streams need to have some contribution from ground water in order to provide reliable habitat for aquatic organisms. Natural processes and human activities can have a substantial effect on the flow of streams between their headwaters and downstream reaches. Streams lose water to ground water when and where their head is higher than the contiguous water table. Although very common in arid regions, loss of stream water to ground water also is relatively common in humid regions. Evaporation, as well as transpiration from riparian vegetation, causing ground-water levels to decline also can cause loss of stream water. Human withdrawal of ground water commonly causes streamflow to decline, and in some regions has caused streams to cease flowing. [source]

    Effects of Rainfall and Ground-Water Pumping on Streamflow in M,kaha, O'ahu, Hawai'i,

    Alan Mair
    Abstract:, Land-use/land-cover changes in M,kaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground-water pumping data for the upper part of the M,kaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground-water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground-water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground-water recharge and flow in the study area, and stream base flow and storm flow. [source]

    Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystems

    ECOHYDROLOGY, Issue 4 2009
    C. Tague
    Abstract The response of forests to a warmer climate depends upon the direct impacts of temperature on forest ecophysiology and indirect effects related to a range of biogeophysical processes. In alpine regions, reduced snow accumulation and earlier melt of seasonal snowpacks are expected hydrologic consequences of warming. For forests, this leads to earlier soil moisture recharge, and may increase summer drought stress. At the same time, increased air temperature alters plant net primary productivity. Most models of climate change impacts focus either on hydrologic behaviour or ecosystem structure or function. In this study we address the interactions between them. We use a coupled model of eco-hydrologic processes to estimate changes in evapotranspiration and vegetation productivity under temperature warming scenarios. Results from Yosemite National Park, in the California Sierra Nevada, suggest that for most snow-dominated elevations, the shift in the timing of recharge is likely to lead to declines in productivity and vegetation water use, even with increased water-use efficiency associated with elevated atmospheric CO2 concentrations. The strength of this effect, however, depends upon interactions between several factors that vary substantially across elevation gradients, including the initial timing of melt relative to the summer growing season, vegetation growth, and the extent to which initial vegetation is water-limited or temperature-limited. These climate-driven changes in vegetation water use also have important implications for summer streamflow. Results from this analysis provide a framework that can be used to develop strategic measurement campaigns and to extrapolate from local measurements of vegetation responses to watershed scale patterns. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Relating streamflow characteristics to specialized insectivores in the Tennessee River Valley: a regional approach,

    ECOHYDROLOGY, Issue 4 2008
    Rodney R. Knight
    Abstract Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance), and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was completed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession can strand fish in pools and other areas that are disconnected from flowing water and remove invertebrates as food sources that were suspended during high-streamflow events. Copyright © 2008 John Wiley & Sons, Ltd. [source]

    Methods for the analysis of trends in streamflow response due to changes in catchment condition

    ENVIRONMETRICS, Issue 7 2001
    R. A. Letcher
    Abstract Two algorithms for analysing changes in streamflow response due to changes in land use and farm dam development, based on the Estimated Generalized Least Squares (EGLS) and the Generalized Additive Model (GAM) methods, were compared on three catchments in the Macquarie River Basin in NSW, Australia. In order to account for the influence of climatic conditions on streamflow response, the IHACRES conceptual rainfall-runoff model was calibrated on a daily time step over two-year periods then simulated over the entire period of concurrent rainfall, streamflow and temperature data. Residuals or differences between observed and simulated flows were calculated. The EGLS method was applied to a smoothing of the residual (daily) time series. Such residuals represent the difference between the simulated streamflow response to a fixed catchment condition (in the calibration period) and that due to the actual varying conditions throughout the record period. The GAM method was applied to quarterly aggregated residuals. The methods provided similar qualitative results for trends in residual streamflow response in each catchment for models with a good fitting performance on the calibration period in terms of a number of statistics, i.e. the coefficient of efficiency R2, bias and average relative parameter error (ARPE). It was found that the fit of the IHACRES model to the calibration period is critically important in determining trend values and significance. Models with well identified parameters and less correlation between rainfall and model residuals are likely to give the best results for trend analysis. Copyright © 2001 John Wiley & Sons, Ltd. [source]

    Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    FRESHWATER BIOLOGY, Issue 2 2010
    Summary 1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (,NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. [source]

    Hydrologic responses to earthquakes and a general metric

    GEOFLUIDS (ELECTRONIC), Issue 1-2 2010
    Geofluids (2010) 10, 206,216 Abstract Hydrologic responses to earthquakes, including liquefaction, changes in stream and spring discharge, changes in the properties of groundwater such as geochemistry, temperature and turbidity, changes in the water level in wells, and the eruption of mud volcanoes, have been documented for thousands of years. Except for some water-level changes in the near field which can be explained by poroelastic responses to static stress changes, most hydrologic responses, both within and beyond the near field, can only be explained by the dynamic responses associated with seismic waves. For these responses, the seismic energy density e may be used as a general metric to relate and compare the various hydrologic responses. We show that liquefaction, eruption of mud volcanoes and increases in streamflow are bounded by e , 10,1 J m,3; temperature changes in hot springs are bounded by e , 10,2 J m,3; most sustained groundwater changes are bounded by e , 10,3 J m,3; geysers and triggered seismicity may respond to seismic energy density as small as 10,3 and 10,4 J m,3, respectively. Comparing the threshold energy densities with published laboratory measurements, we show that undrained consolidation induced by dynamic stresses can explain liquefaction only in the near field, but not beyond the near field. We propose that in the intermediate field and far field, most responses are triggered by changes in permeability that in turn are a response to the cyclic deformation and oscillatory fluid flow. Published laboratory measurements confirm that changes in flow and time-varying stresses can change permeability, inducing both increases and decreases. Field measurements in wells also indicate that permeability can be changed by earthquakes in the intermediate field and far field. Further work, in particular field monitoring and measurements, are needed to assess the generality of permeability changes in explaining far-field hydrologic responses to earthquakes. [source]


    ABSTRACT. Meltwater contributes to watershed hydrology by increasing summer discharge, delaying the peak spring runoff, and decreasing variability in runoff. High-elevation snowshed meltwater, including glacier-derived input, provides an estimated 26.9 percent of summer streamflow (ranging annually from 16 to 40 percent) in the Nooksack River Basin above the town of Deming, Washington, in the North Cascades Range. The Nooksack is a major spawning river for salmon and once was important for commercial, recreational, and tribal fishing, and in the past its flow met the demands of both human and aquatic ecosystems. But the river is already legally overallocated, and demand is rising in response to the rapidly growing human population. Variability in snowshed contributions to the watershed is considerable but has increased from an average of 25.2 percent in the 1940s to an average of 30.8 percent in the 1990s. Overall stream discharge shows no significant increase, suggesting that the glaciers are melting, and/or precipitation levels (or other hydrologic factors) are decreasing at about the same rate. If glaciers continue to recede, they may disappear permanently from the Cascades. If that occurs, their summer contribution to surface-water supplies will cease, and water-management policies will need drastic revision. [source]

    Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange

    John M. Buffington
    We propose that the mechanisms driving hyporheic exchange vary systematically with different channel morphologies and associated fluvial processes that occur in mountain basins, providing a framework for examining physical controls on hyporheic environments and their spatial variation across the landscape. Furthermore, the spatial distribution of hyporheic environments within mountain catchments represents a nested hierarchy of process controls. Large-scale process drivers (geology, climate, fire, and land use) impose a suite of watershed conditions (topography, streamflow, sediment supply, and vegetation) on the fluvial system. Different combinations of imposed watershed conditions result in different reach-scale channel morphologies (e.g. step-pool, pool-riffle, and braided) that, in turn, structure hyporheic processes (e.g. pressure divergence, spatial variation of hydraulic conductivity) and resultant hyporheic environments (scales and rates of hyporheic exchange). Consequently, a holistic view of natural and anthropogenic drivers over a range of spatial and temporal scales is needed for understanding hyporheic ecosystems. [source]

    Constraining the Sheffield dynamic global vegetation model using stream-flow measurements in the United Kingdom

    GLOBAL CHANGE BIOLOGY, Issue 12 2005
    G. Picard
    Abstract The biospheric water and carbon cycles are intimately coupled, so simulating carbon fluxes by vegetation also requires modelling of the water fluxes, with each component influencing the other. Observations of river streamflow integrate information at the catchment scale and are widely available over a long period; they therefore provide an important source of information for validating or calibrating vegetation models. In this paper, we analyse the performance of the Sheffield dynamic global vegetation model (SDGVM) for predicting river streamflow and quantifying how this information helps to constrain carbon flux predictions. The SDGVM is run for 29 large catchments in the United Kingdom. Annual streamflow estimates are compared with long time-series observations. In 23 out of the 29 catchments, the bias between model and observations is less than 50 mm, equivalent to less than 10% of precipitation. In the remaining catchments, larger errors are because of combinations of unpredictable causes, in particular various human activities and measurement issues and, in two cases, unidentified causes. In one of the catchments, we assess to what extent a knowledge of annual streamflow can constrain model parameters and in turn constrain estimates of gross primary production (GPP). For this purpose, we assume the model parameters are uncertain and constrain them by the streamflow observations using the generalized likelihood uncertainty estimation method. Comparing the probability density function of GPP with and without constraint shows that streamflow effectively constrains GPP, mainly by setting a low probability to GPP values below about 1100 g C,1 m2 yr,1. In other words, streamflow observations allow the rejection of low values of GPP, so that the potential range of possible GPP values is almost halved. [source]

    Estimating Ground Water Recharge from Topography, Hydrogeology, and Land Cover

    GROUND WATER, Issue 1 2005
    Douglas S. Cherkauer
    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%. [source]

    Quantifying Ground Water Recharge at Multiple Scales Using PRMS and GIS

    GROUND WATER, Issue 1 2004
    Douglas S. Cherkauer
    Management of ground water resources requires a method to calculate demonstrably accurate recharge rates at local to regional scales using readily available information bases. Many methods are available to calculate recharge, but most are unable to satisfy all these conditions. A distributed parameter model is shown to meet the stated needs. Such models are input intensive, however, so a procedure to define most inputs from GIS and hydrogeological sources is presented. It simplifies the PRMS calibration observed streamflow hydrographs by reducing degrees of freedom from dozens to four. For seven watersheds (60 to 500 km2), the GIS-aided calibrations have average errors of 5% on recharge and 2% on total streamflow, verifying the accuracy of the process. Recharge is also calculated for 63 local-scale subwater-sheds (average size 37 km2). For the study area, calculated recharges average 11 cm/yr. Soil and rock conductivity, porosity, and depth to the water table are shown to be the physical properties which dominate the spatial variability of recharge. The model has been extended to uncalibrated watersheds where GIS and climatic information are known. It reproduces total annual discharge and recharge to within 9% and 10%, respectively, indicating the process can also be used to calculate recharge in ungauged watersheds. It has not been tested outside the study area, however. [source]

    Review of the Integrated Groundwater and Surface-Water Model (IGSM)

    GROUND WATER, Issue 2 2003
    Eric M. LaBolle
    Development of the finite-element-based Integrated Groundwater and Surface-Water Model (IGSM) began in the 1970s. Its popularity grew in the early 1990s with its application to California's Central Valley Groundwater Surface-Water Model in support of the Central Valley Project Improvement Act. Since that time, IGSM has been applied by federal, state, and local agencies to model a number of major basins in California. Our review of the recently released version 5.0 of IGSM reveals a solution methodology that deviates from established solution techniques, potentially compromising its reliability under many circumstances. One difficulty occurs because of the semi-explicit time discretization used. Combined with the fixed monthly time step of IGSM, this approach can prevent applications from accurately converging when using parameter values typically found in nature. Additionally, IGSM fails to properly couple and simultaneously solve ground water and surface water models with appropriate mass balance and head convergence under the reasonable conditions considered herein. As a result, IGSM-predicted streamflow is error prone, and errors could exceed 100%. IGSM does not inform the user that there may be a convergence problem with the solution, but instead generally reports good mass balance. Although our review touches on only a few aspects of the code, which exceeds 17,000 lines, our experience is that similar problems arise in other parts of IGSM. Review and examples demonstrate the potential consequences of using the solution methods in IGSM for the prediction, planning, and management of water resources, and provide perspective on the roles of standards and code validation in ground water modeling. [source]

    Is rainfall intensity significant in the rainfall,runoff process within tropical rainforests of northeast Queensland?

    The Hewlett regression analyses revisited
    Abstract Following the statistical analyses of long-term rainfall-runoff records from research basins in humid temperate latitudes, Hewlett and co-workers extended the global challenge to disprove their findings that rainfall intensity was non-significant. This paper responds to Hewlett's challenge as no preceding analyses have involved forested basins in a tropical cyclone-prone area. Based on a 7 year rainfall-runoff record, quickflow (QF), peak flow (QP) and quickflow response ratios (QRR) were regressed as dependent variables against rainfall parameters (intensity, Pi, amount, P), storm duration, D and antecedent flow, I. These data sets were categorised into total streamflow (Q) classes and stratified into three seasons, (monsoon, post-monsoon and dry) for forested and cleared catchments. Where rainfall variable collinearity met acceptable levels, the addition of Pi to regression models including P, D, I contributed up to 9% and 66% of the respective variations in quickflow and peak flow. For the highest Q storm classes (monsoon), Pi alone accounted for up to 67% and 91% of the variation in QF and QP respectively and was the dominant influence on QP for all seasons. The very high rainfall intensities experienced in the monsoon season is a causal factor why these results differ from those of other research drainage basins. Surprisingly, Pi continued to have a significant influence on QF for dry season classes when less-intense rainfall occurs. Further the results were similar for both catchments across all seasons. P was the dominant independent variable affecting QF above a threshold Q of 50 mm (monsoon), as rainfall contributes directly to saturation overland flow and return flow under saturated conditions. Further although QRR increased with increasing Q for each season, the regression results for that parameter were poor possibly due to the non-linearity of the rainfall-runoff relationship. Copyright © 2010 John Wiley & Sons, Ltd. [source]

    Storage dynamics and streamflow in a catchment with a variable contributing area

    C. Spence
    Abstract Storage heterogeneity effects on runoff generation have been well documented at the hillslope or plot scale. However, diversity across catchments can increase the range of storage conditions. Upscaling the influence of small-scale storage on streamflow across the usually more heterogeneous environment of the catchment has been difficult. The objective of this study was to observe the distribution of storage in a heterogeneous catchment and evaluate its significance and potential influence on streamflow. The study was conducted in the subarctic Canadian Shield: a region with extensive bedrock outcrops, shallow predominantly organic soils, discontinuous permafrost and numerous water bodies. Even when summer runoff was generated from bedrock hillslopes with small storage capacities, intermediary locations with large storage capacities, particularly headwater lakes, prevented water from transmitting to higher order streams. The topographic bounds of the basin thus constituted the maximum potential contributing area to streamflow and rarely the actual area. Topographic basin storage had little relation to basin streamflow, but hydrologically connected storage exhibited a strong hysteretic relationship with streamflow. This relationship defines the form of catchment function such that the basin can be defined by a series of storing and contributing curves comparable with the wetting and drying curves used in relating tension and hydraulic conductivity to water content in unsaturated soils. These curves may prove useful for catchment classification and elucidating predominant hydrological processes. Copyright © 2009 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada. [source]

    Estimation of rainfall from infrared-microwave satellite data for basin-scale hydrologic modelling

    Oscar Anthony Kalinga
    Abstract The infrared-microwave rainfall algorithm (IMRA) was developed for retrieving spatial rainfall from infrared (IR) brightness temperatures (TBs) of satellite sensors to provide supplementary information to the rainfall field, and to decrease the traditional dependency on limited rain gauge data that are point measurements. In IMRA, a SLOPE technique (ST) was developed for discriminating rain/no-rain pixels through IR image cloud-top temperature gradient, and 243K as the IR threshold temperature for minimum detectable rainfall rate. IMRA also allows for the adjustment of rainfall derived from IR-TB using microwave (MW) TBs. In this study, IMRA rainfall estimates were assessed on hourly and daily basis for different spatial scales (4, 12, 20, and 100 km) using NCEP stage IV gauge-adjusted radar rainfall data, and daily rain gauge data. IMRA was assessed in terms of the accuracy of the rainfall estimates and the basin streamflow simulated by the hydrologic model, Sacramento soil moisture accounting (SAC-SMA), driven by the rainfall data. The results show that the ST option of IMRA gave accurate satellite rainfall estimates for both light and heavy rainfall systems while the Hessian technique only gave accurate estimates for the convective systems. At daily time step, there was no improvement in IR-satellite rainfall estimates adjusted with MW TBs. The basin-scale streamflow simulated by SAC-SMA driven by satellite rainfall data was marginally better than when SAC-SMA was driven by rain gauge data, and was similar to the case using radar data, reflecting the potential applications of satellite rainfall in basin-scale hydrologic modelling. Copyright © 2010 John Wiley & Sons, Ltd. [source]

    An analysis of alternative conceptual models relating hyporheic exchange flow to diel fluctuations in discharge during baseflow recession

    Steven M. Wondzell
    Abstract Diel fluctuations in stream flow during baseflow have been observed in many streams and are typically attributed to water losses from evapotranspiration (ET). However, there is no widely transferable conceptual model that explains how ET results in diel fluctuations in streamflow at the watershed outlet. For fluctuations to occur, two factors must be present: (1) some process must generate the fluctuations and transfer them to the stream channel, and (2) fluctuations must be accumulated and transported down the stream network in such a way that they arrive at a stream gauge as a coherent signal. We have previously shown how stream flow velocity affects the transport of diel fluctuations in discharge through a stream network. Here, we examined how riparian ET and hyporheic exchange flows generate diel fluctuations in discharge. We hypothesized that ET would cause a slight drawdown of riparian aquifers during the day, slightly increasing head gradients away from the stream and slightly reducing head gradients back to the stream. Thus, slightly more water would flow into the hyporheic zone than is returned to the stream, gradually reducing stream discharge. The process would be reversed at night. Using stream-tracer experiments and riparian water-level data, we tested two hypotheses related to this conceptual model,that the amplitude (H1) and time lag (H2) of diel aquifer drawdown would be constant over the summer. Neither hypothesis was supported by our data. We conclude that the processes that link watershed ET with streams include both local- and watershed-scale effects. Conceptual models attempting to explain diel fluctuations need to include the combined effects of ET on lateral inputs and hyporheic exchange flows, the redistribution of water within riparian aquifers, and the transport of ET signals from the whole stream network to the stream gauge. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Towards a simple dynamic process conceptualization in rainfall,runoff models using multi-criteria calibration and tracers in temperate, upland catchments

    C. Birkel
    Abstract Empirically based understanding of streamflow generation dynamics in a montane headwater catchment formed the basis for the development of simple, low-parameterized, rainfall,runoff models. This study was based in the Girnock catchment in the Cairngorm Mountains of Scotland, where runoff generation is dominated by overland flow from peaty soils in valley bottom areas that are characterized by dynamic expansion and contraction of saturation zones. A stepwise procedure was used to select the level of model complexity that could be supported by field data. This facilitated the assessment of the way the dynamic process representation improved model performance. Model performance was evaluated using a multi-criteria calibration procedure which applied a time series of hydrochemical tracers as an additional objective function. Flow simulations comparing a static against the dynamic saturation area model (SAM) substantially improved several evaluation criteria. Multi-criteria evaluation using ensembles of performance measures provided a much more comprehensive assessment of the model performance than single efficiency statistics, which alone, could be misleading. Simulation of conservative source area tracers (Gran alkalinity) as part of the calibration procedure showed that a simple two-storage model is the minimum complexity needed to capture the dominant processes governing catchment response. Additionally, calibration was improved by the integration of tracers into the flow model, which constrained model uncertainty and improved the hydrodynamics of simulations in a way that plausibly captured the contribution of different source areas to streamflow. This approach contributes to the quest for low-parameter models that can achieve process-based simulation of hydrological response. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Modelling blowing snow redistribution to prairie wetlands

    X. Fang
    Abstract Blowing snow transports and sublimates a substantial portion of the seasonal snowfall in the prairies of western Canada. Snow redistribution is an important feature of prairie hydrology as deep snowdrifts provide a source of meltwater to replenish ponds and generate streamflow in this dry region. The spatial distribution of snow water equivalent in the spring is therefore of great interest. A test of the distributed and aggregated modelling strategies for blowing snow transport and sublimation was conducted at the St. Denis National Wildlife Area in the rolling, internally drained prairie pothole region east of Saskatoon, Saskatchewan, Canada. A LiDAR-based DEM and aerial photograph-based vegetation cover map were available for this region. A coupled complex windflow and blowing snow model was run with 262,144 6 m × 6 m grid cells to produce spatially distributed estimates of seasonal blowing snow transport and sublimation. The calculation was then aggregated to seven landscape units that represented the major influences of surface roughness, topography and fetch on blowing snow transport and sublimation. Both the distributed and aggregated simulations predicted similar end-of-winter snow water equivalent with substantial redistribution of blowing snow from exposed sparsely vegetated sites across topographic drainage divides to the densely vegetated pothole wetlands. Both simulations also agreed well with snow survey observations. While the distributed calculations provide a fascinating and detailed visual image of the interaction of complex landscapes and blowing snow redistribution and sublimation, it is clear that blowing snow transport and sublimation calculations can be successfully aggregated to the spatial scale of the major landscape units in this environment. This means that meso and macroscale hydrological models can represent blowing snow redistribution successfully in the prairies. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Transient storage and downstream solute transport in nested stream reaches affected by beaver dams

    Li Jin
    Abstract Transient storage constitutes a key element in the hydrologic cycle of watersheds. Both in-channel slow moving water (dead zones) and hyporheic zones can contribute to transient storage, which retains water and solutes, increases residence time and influences solute transport in streams. Beaver dams and other in-stream obstructions throughout low-order streams attenuate streamflow and provide dead zone storage in pools. In this article, we report the results of four tracer tests in nested stream reaches in Cherry Creek (Wyoming, USA) covering ,2·5 km of stream length to explore how the degree of beaver dam obstructions and their impoundments influence water transient storage and downstream solute transport in low-order streams in the Rocky Mountain region of the American West. Travel-time parameters for the tracer tests increased linearly with beaver dam number (N) and pond size (V). Linear regression of the travel time to the peak concentration (Tp), the leading (Tl) and tailing edge (Tt) of the dye cloud and the duration of the dye cloud (Td) versus N and V were all significant (R2 = 0·99). Slopes of the linear regressions of Tt versus N and V, were three times larger than those for Tl, suggesting that longer residence times may be caused, in part, by transient storage in the stream system. One-dimensional transport with inflow and storage (OTIS) modelled cross-sectional area of transient storage zone (As) and dispersion coefficients (D) increased linearly with N and V and reach length. Two transient storage metrics, Fmean and , also showed a general increase with N and V, although the relationship was not as strong. This suggests that in-channel dead zones associated with beaver dams provide opportunities for generating transient water storage. The linear relationship between dispersion coefficient and reach length suggests the dispersion process might be analogous to the hydrodynamic dispersion in groundwater settings. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Crytic period analysis model of hydrological process and its application

    Hongrui Wang
    Abstract It is difficult to analyse the crytic period of the hydrological process, because hydrological time series is probably characterized by heteroscedasticity. To find out the crytic period, a model is constructed as follows: (1) after using zero-mean transformation for the data, to do Augmented Dickey,Fuller stationary test for the sequence, to build the corresponding AR(p) model and then to do ARCH effects test and white noise test for residual series; (2) for those time series that cannot pass through ARCH test, using logarithm transformation to reduce the heteroscedasticity, and then to redo step (1) until they pass through ARCH test and stationary test; (3) using periodogram analysis to determine all the possible the prime periods and further to put forward three kinds of tests to determine significance level of those prime periods. As examples, the hydrological processes of streamflow from 1784 to 1997 for the gauging stations of Alaer and Xinquman along Tarim River are analysed. After reducing their heteroscedasticity, AR(4) and AR(2) models are developed, respectively. Our results show that the streamflows from the two gauging stations have the same cryptic period of 42·7 years. Furthermore, the reliability for the crytic period model is testified by variance analysis, which shows that the crytic period model is useful and reliable. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes

    Qiang Zhang
    Abstract The alterations of the water level across the Pearl River Delta (PRD) were investigated using a ,range of variability approach' (RVA) based on monthly water level datasets extracted from 17 gauging stations. A mapping method was used to illustrate the spatial patterns in the degrees of alteration of water levels. The results indicated that more stations showing moderate and high alterations in monthly mean maximum and minimum water levels when compared with monthly maximum and minimum water levels. River channels characterized by higher alterations of water levels were observed mainly in the regions north of 22° 30,N. Alterations of water levels across the PRD were a consequence of various influencing factors. However, changed hypsography due to extensive and intensive human activities, particularly the large-scale dredging and excavation of the river sand, may be taken as one of the major causes for the substantial hydrologic alteration. This study indicated that the river channels characterized by altered water levels are mostly those characterized by highly and moderately intensive sand dredging. The changed ratio of the streamflow between Makou and Sanshui stations, the major upstream flow control stations, also influenced the water level alterations of the Pearl River delta. The results of this study will be of great significance in water resources management and better human mitigation of the natural hazards due to the altered water level under the changing environment. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    Hydrological behaviour and modelling of a volcanic tropical cultivated catchment

    Jean-Baptiste Charlier
    Abstract The hydrological behaviour of the cultivated Féfé catchment (17·8 ha) on the tropical volcanic island of Guadeloupe was studied to identify flow paths, to quantify water fluxes, and finally, to build a lumped model to simulate discharge and piezometer levels. The approach combined two steps, an experimental step and a modelling step, which covered two time scales, the annual and the storm event scale. The hydrological measurements were conducted over 2 years. The Féfé catchment is characterized by heavy rainfall (4229 mm year,1) on permeable Andosols; the results showed that underground flow paths involved two overlapping aquifers, and that the annual water balance in 2003 was shared among outflows of the deep aquifer (42%), evapotranspiration (31%), and streamflow (27%). On the event scale, the surface runoff coefficient ranges between 6·2% and 24·4% depending on antecedent dry or wet moisture conditions. Hortonian overland flow predominated over subsurface and saturation overland flow processes. Recharge of the shallow aquifer is mainly governed by a constant infiltration capacity of the Andosols with depth in the vadose zone. Outflows of this shallow aquifer were the baseflow of the main stream and the recharge of the deep aquifer. Volcanic deposits at Féfé promoted the underground flow path, and cultivated areas seemed to explain the high stormflow values relative to other tropical small catchments under rain forest. A conceptual lumped model integrating runoff, infiltration, evapotranspiration, and fluctuations of the two overlapping aquifers was developed. The model has six parameters and was calibrated and validated on the hydrograph at the outlet and on the two piezometers of the shallow and the deep aquifers. The results show fair to good agreement between measured and simulated variables, and consequently, the model was consistent with the main hydrological processes observed from experimental results in wet conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source]

    Hydrogeologic controls on streamflow sensitivity to climate variation

    Anne Jefferson
    Abstract Climate models project warmer temperatures for the north-west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater-dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff-dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross-correlation between precipitation and discharge in the groundwater-dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter-annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater-dominated streams makes them more sensitive than runoff-dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd. [source]