Home About us Contact | |||
Stream Chemistry (stream + chemistry)
Selected AbstractsPossible Environmental Factors Underlying Amphibian Decline in Eastern Puerto Rico: Analysis of U.S. Government Data ArchivesCONSERVATION BIOLOGY, Issue 4 2001Robert F. Stallard I examined changes in environmental conditions by examining time-series data sets that extend back at least into the 1980s, a period when frog populations were declining. The data include forest cover; annual mean, minimum, and maximum daily temperature; annual rainfall; rain and stream chemistry; and atmospheric-dust transport. I examined satellite imagery and air-chemistry samples from a single National Aeronautics and Space Administration aircraft flight across the Caribbean showing patches of pollutants, described as thin sheets or lenses, in the lower troposphere. The main source of these pollutants appeared to be fires from land clearing and deforestation, primarily in Africa. Some pollutant concentrations were high and, in the case of ozone, approached health limits set for urban air. Urban pollution impinging on Puerto Rico, dust generation from Africa ( potential soil pathogens), and tropical forest burning ( gaseous pollutants) have all increased during the last three decades, overlapping the timing of amphibian declines in eastern Puerto Rico. None of the data sets pointed directly to changes so extreme that they might be considered a direct lethal cause of amphibian declines in Puerto Rico. More experimental research is required to link any of these environmental factors to this problem. Resumen: Las pasadas tres décadas han visto grandes disminuciones poblacionales de especies de anfibios en altas elevaciones de Puerto Rico oriental, una región única en los trópicos húmedos debido al grado de monitoreo ambiental que se ha llevado a cabo mediante los esfuerzos de las agencias de gobierno de los Estados Unidos. Examiné los cambios en condiciones ambientales mediante el análisis de datos de series de tiempo que se extienden hasta los 1980s, un periodo en el que las poblaciones de ranas estaban declinando. Los datos incluyen cobertura forestal; temperatura diaria media, mínima y máxima anual; precipitación anual; química de la lluvia y arroyos; y el transporte atmosférico de polvo. Examiné imágenes de satélite y muestras de química del aire obtenidos de un solo vuelo de una nave de la NASA a lo largo del Caribe que mostraba parches de contaminantes descritas como capas delgadas de lentes en la inferior troposfera. La mayor fuente de contaminantes parece ser los incendios de tierras clareadas y la deforestación, principalmente en África. Algunas concentraciones de contaminantes fueron altas y en el caso del ozono, se aproximó a los límites de salud establecidos para aire urbano. La contaminación urbana afectando a Puerto Rico, la generación de polvo en África ( patógenos del suelo potenciales) y la quema de bosque tropical (contaminantes gaseosos) han incrementado durante las últimas tres décadas, superponiéndose con el periodo en que oturrieron las disminuciones de anfibios en Puerto Rico oriental. Ninguno de estos conjuntos de datos señaló directamente hacia cambios tan extremos que debieran ser considerados como una causa letal directa de las disminuciones en Puerto Rico. Se requiere de más investigación experimental que vincule a estos factores ambientales con este problema. [source] Variability of Isotope and Major Ion Chemistry in the Allequash Basin, WisconsinGROUND WATER, Issue 7 2003John F. Walker As part of ongoing research conducted at one of the U.S. Geological Survey's Water, Energy, and Biogeochem-ical Budgets sites, work was undertaken to describe the spatial and temporal variability of stream and ground water isotopic composition and cation chemistry in the Trout Lake watershed, to relate the variability to the watershed flow system, and to identify the linkages of geochemical evolution and source of water in the watershed. The results are based on periodic sampling of sites at two scales along Allequash Creek, a small headwater stream in northern Wisconsin. Based on this sampling, there are distinct water isotopic and geochemical differences observed at a smaller hillslope scale and the larger Allequash Creek scale. The variability was larger than expected for this simple watershed, and is likely to be seen in more complex basins. Based on evidence from multiple isotopes and stream chemistry, the flow system arises from three main source waters (terrestrial-, lake-, or wetland-derived recharge) that can be identified along any flowpath using water isotopes together with geochemical characteristics such as iron concentrations. The ground water chemistry demonstrates considerable spatial variability that depends mainly on the flow-path length and water mobility through the aquifer. Calcium concentrations increase with increasing flowpath length, whereas strontium isotope ratios increase with increasing extent of stagnation in either the unsaturated or saturated zones as waters move from source to sink. The flowpath distribution we identify provides important constraints on the calibration of ground water flow models such as that undertaken by Pint et al. (this issue). [source] Hydrological and biogeochemical processes in a changing Amazon: results from small watershed studies and the large-scale biosphere-atmosphere experimentHYDROLOGICAL PROCESSES, Issue 12 2006Christopher Neill Abstract The Amazon Basin is the world's largest tropical forest region and one where rapid human changes to land cover have the potential to cause significant changes to hydrological and biogeochemical processes. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multidisciplinary, multinational research program led by Brazil. The goal of LBA is to understand how the Amazon Basin functions as a regional entity in the earth system and how these functions are changing as a result of ongoing human activity. This compilation of nine papers focuses on a central LBA question in the area of nutrient dynamics and surface water chemistry,how do changes in land use alter fluxes of dissolved and particulate materials from uplands across riparian zones and down the channels of river corridors? These papers cover work conducted in small watersheds on a wide range of topics within the spirit and geographical focus area of LBA: water balance and runoff generation, nutrient transformations in riparian zones and stream channels, carbon fluxes in water moving from land to water and the influence of soils on flowpath structure and stream chemistry. Important new insights can be gained from these and other studies. Forest clearing for pastures results in a decrease in soil hydraulic conductivity that forces water into surficial flowpaths throughout most of the rainy season across wide regions of the Amazon. Riparian zones along small forest streams appear to be very effective in removing nitrate arriving from the uplands, while forest streams take up nitrate at very low rates, allowing them to travel downstream for long distances. Although substantial, the contribution of dissolved organic C (DOC) to the carbon flux from forests to streams appears to be lower than the flux of dissolved inorganic C that is subsequently outgassed as CO2. Remaining key challenges within LBA will be to synthesize existing data sets on river networks, soils, climate, land use and planned infrastructure for the Amazon to develop models capable of predicting hydrologic and biogeochemical fluxes at a variety of scales relevant to the development of strategies for sustainable management of the Amazon's remarkable forest, soil and freshwater resources. Copyright © 2006 John Wiley & Sons, Ltd. [source] Defining hydrochemical evolution of streamflow through flowpath dynamics in Kawakami headwater catchment, Central JapanHYDROLOGICAL PROCESSES, Issue 10 2005Kasdi Subagyono Abstract The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21,22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first-order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end-member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd. [source] Landscape influences on aluminium and dissolved organic carbon in streams draining the Hubbard Brook valley, New Hampshire, USAHYDROLOGICAL PROCESSES, Issue 9 2005Sheila M. Palmer Abstract Concentrations of both aluminium (Al) and dissolved organic carbon (DOC) in stream waters are likely to be regulated by factors that influence water flowpaths and residence times, and by the nature of the soil horizons through which waters flow. In order to investigate landscape-scale spatial patterns in streamwater Al and DOC, we sampled seven streams draining the Hubbard Brook valley in central New Hampshire. We observed considerable variation in stream chemistry both within and between headwater watersheds. Across the valley, concentrations of total monomeric aluminium (Alm) ranged from below detection limits (<0·7 µmol l,1) to 22·3 µmol l,1. In general, concentrations of Alm decreased as pH increased downslope. There was a strong relationship between organic monomeric aluminium (Alo) and DOC concentrations (R2 = 0·92). We observed the highest Alm concentrations in: (i) a watershed characterized by a steep narrow drainage basin and shallow soils and (ii) a watershed characterized by exceptionally deep forest floor soils and high concentrations of DOC. Forest floor depth and drainage area together explained much of the variation in ln Alm (R2 = 0·79; N = 45) and ln DOC (R2 = 0·87; N = 45). Linear regression models were moderately successful in predicting ln Alm and ln DOC in streams that were not included in model building. However, when back-transformed, predicted DOC concentrations were as much as 72% adrift from observed DOC concentrations and Alm concentrations were up to 51% off. This geographic approach to modelling Al and DOC is useful for general prediction, but for more detailed predictions, process-level biogeochemical models are required. Copyright © 2005 John Wiley & Sons, Ltd. [source] Understanding and modeling basin hydrology: interpreting the hydrogeological signatureHYDROLOGICAL PROCESSES, Issue 7 2005R. E. Beighley Abstract Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall-runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over-parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall-runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse-textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel,Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd. [source] Towards integrating tracer studies in conceptual rainfall-runoff models: recent insights from a sub-arctic catchment in the Cairngorm Mountains, ScotlandHYDROLOGICAL PROCESSES, Issue 2 2003Chris Soulsby Abstract Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined. Copyright © 2003 John Wiley & Sons, Ltd. [source] Significance of processes in the near-stream zone on stream water acidity in a small acidified forested catchmentHYDROLOGICAL PROCESSES, Issue 2 2001Jens Fölster Abstract The near-stream zone has received increasing attention owing to its influence on stream water chemistry in general and acidity in particular. Possible processes in this zone include cation exchange, leaching of organic matter and redox reactions of sulphur compounds. In this study the influences of processes in the near-stream zone on the acidity in runoff from a small, acidified catchment in central southern Sweden were investigated. The study included sampling of groundwater, soil water and stream water along with hydrological measurements. An input,output budget for the catchment was established based on data from the International Co-operative Programme on Integrated Monitoring at this site. The catchment was heavily acidified by deposition of anthropogenic sulphur, with pH in stream water between 4·4 and 4·6. There was also no relationship between stream flow and pH, which is indicative of chronic acidification. Indications of microbial reduction of sulphate were found in some places near the stream, but the near-stream zone did not have a general impact on the sulphate concentration in discharging groundwater. The near-stream zone was a source of dissolved organic carbon (DOC) in the stream, which had a median DOC of 6·8 mg L1. The influence on stream acidity from organic anions was overshadowed by the effect of sulphate, however, except during a spring flow episode, when additional organic matter was flushed out and the sulphate-rich ground water was mixed with more diluted event water. Ion exchange was not an important process in the near-stream zone of the Kindla catchment. Different functions of the near-stream zone relating to discharge acidity are reported in the literature. In this study there was even a variation within the site. There is therefore a need for more case studies to provide a more detailed understanding of the net effects that the near-stream zone can have on stream chemistry under different circumstances. Copyright © 2001 John Wiley & Sons, Ltd. [source] Electron Transport System (ETS) Activity in Alder Leaf Litter in Two Contrasting Headwater StreamsINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 4-5 2007Tadeusz Fleituch Abstract Decomposition rates, carbon and nitrogen concentrations and respiration electron transport (ETS) activity in alder leaf litter were examined by bag exposition method in two contrasting 2nd order streams. Oberer Seebach, Austria (alpine, limestone, karstic) and Goscibia, Poland (sub mountain, flysh) contrasted in catchment geology, channel hydrology, thermal regime and water chemistry. Despite differences in water temperature, the breakdown rates did not show statistical differences. However, the C:N ratio in alder leaf litter varied significantly between two sites. The potential ETS activity was significantly higher in the colder Goscibia and weakly related to stream thermal regimes. The effect of temperature on ETS of alder leaves was not the dominating factor. It was masked by variation of other factors like stream chemistry and the contribution of fine sediments, which are related to stream morphology and channel hydrology. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |