Stratospheric Temperature (stratospheric + temperature)

Distribution by Scientific Domains


Selected Abstracts


The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view.

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2001
Part I: data, methodology, temporal behaviour
Abstract The lower stratosphere monthly temperature anomalies over the Southern Hemisphere derived from soundings made by the Microwave Sounding Unit (MSU) between 1979 and 1997 are analysed. Specifically MSU channel 4 temperature retrievals are considered. Principal component (PC) analysis with the S-mode approach is used in order to isolate grid points that covary in a similar manner and to determine the main features of their temporal behaviour. The first six PCs explain 81.3% of the variance and represent the different time variability patterns observed over the Southern Hemisphere for the ten area clusters determined by the method. The most important feature is common to all the PC score pattern,time series and corresponds to a negative linear trend present in almost all the Southern Hemisphere except over New Zealand and surrounding areas. The negative trend is largest over Antarctica. The remaining features of the temporal variability are different for each PC score and therefore for each cluster region over the Southern Hemisphere. The first PC score pattern shows the impact of the Chichón and Mt Pinatubo eruptions that each produced a 2-year warming over the tropical and sub-tropical lower stratosphere. This variability is orthogonal with the behaviour present over Antarctica. There are different anomalies between 1987 (El Niño) and 1988 (La Niña). This second PC does not show any evidence whatsoever of the volcanic eruptions. The semi-annual wave is present in the anomaly recurrence at mid to high latitudes. Over very low latitudes, close to the Equator, the Quasi-Biennial Oscillation (QBO) band of frequency is also present. Copyright © 2001 Royal Meteorological Society [source]


The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view.

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2001
Part II: spatial behaviour
Abstract Monthly lower stratosphere temperature anomalies in a layer centred about 70 hPa, from the MSU data set are analysed for the period 1979,1997. T-mode approach principal component analysis (PCA) is used in order to obtain the leading spatial anomaly patterns and their sequences of occurrence throughout the period under study. Five principal components (PCs) are significantly different from the spatial distribution of noisy data. The patterns given by the PC scores represent ten typical spatial anomaly patterns: five correspond to the direct mode, that is to say anomaly fields with the same sign as the PC score patterns, and five have the opposite sign. The first three PCs represent simple spatial temperature anomaly distributions, with zonal wave 0 to wave 2 wave structures. The following significant PCs, orders four and five, display a more complex spatial behaviour, with wave 3 wave structures. The first two PC's frequency distribution in time, given by the PC loadings time series, do not show noticeable changes throughout the period analysed. The remaining three PCs show changes in their frequency of occurrence that might be associated with the negative trends in the lower stratosphere temperature, as well as to the other different features observed in the real temperature anomaly time series for the grid points in the Southern Hemisphere. The latter are studied with the PCA in the S-mode approach in the companion paper (Compagnucci et al., 2001. International Journal of Climatology21: 419,437). Copyright © 2001 Royal Meteorological Society [source]


Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU-A

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 645 2009
Shinya Kobayashi
Abstract Radiance measurements from the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit (AMSU-A) are the primary source of information for stratospheric temperature in reanalyses of the satellite era. To improve the time consistency of the reanalyses, radiance biases need to be properly understood and accounted for in the assimilation system. The investigation of intersatellite differences between SSU and AMSU-A radiance observations shows that these differences are not accurately reproduced by the operational version of the radiative transfer model for the TIROS Operational Vertical Sounder (RTTOV-8). We found that this deficiency in RTTOV was mainly due to the treatment of the Zeeman effect (splitting of the oxygen absorption lines at 60 GHz) and to changes in the spectral response function of the SSU instrument that are not represented in RTTOV. On this basis we present a revised version of RTTOV that can reproduce SSU and AMSU-A intersatellite radiance differences more accurately. Assimilation experiments performed with the revised version of RTTOV in a four-dimensional variational analysis system (4D-Var) show some improvements in the stratospheric temperature analysis. However, significant jumps in the stratospheric temperature analysis still occur when switching satellites, which is due to the fact that systematic errors in the forecast model are only partially constrained by observations. Using a one-dimensional retrieval equation, we show that both the extent and vertical structure of the partial bias corrections must inevitably change when the nature of the radiance measurement changes with the transition from SSU to AMSU-A. Copyright © 2009 Royal Meteorological Society [source]


Variability of the Northern Hemisphere polar stratospheric cloud potential: the role of North Pacific disturbances

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 641 2009
Yvan J. Orsolini
Abstract The potential of the Arctic stratosphere to sustain the formation of Polar Stratospheric Clouds (PSCs) is a key factor in determining the amount of ozone destroyed each winter, and is often measured as a ,PSC volume'. The latter quantity has been shown to closely follow a near-linear compact relationship with winter-averaged column ozone loss, and displays a high variability from monthly to decadal time-scales. We examine the connection between meteorological conditions in the troposphere and the variability of lower polar stratospheric temperatures over the last four decades, and specifically, conditions leading to a high PSC volume. In addition to the well-established connection between the North Atlantic Oscillation (NAO) and the polar vortex, we demonstrate the large influence of precursory disturbances over the North Pacific and the Far East, the region of maximum climatological upward wave activity flux. Namely, very high monthly PSC volume (in the top 12%) predominantly follows the development of positive tropospheric height anomalies over the Far East, which lead to a weakening of the background planetary wave trough, and lessened upward wave activity flux into the stratosphere. Precursory anomalies over the Far East are reminiscent of East Asian monsoon amplification episodes. Copyright © 2009 Royal Meteorological Society [source]


Combined forecast impact of GRACE-A and CHAMP GPS radio occultation bending angle profiles

ATMOSPHERIC SCIENCE LETTERS, Issue 2 2007
S. B. Healy
Abstract Impact experiments assimilating GRACE-A and CHAMP GPS radio occultation (GPSRO) bending angle profiles are presented. The standard deviation of the observation minus background bending angle departures above 35-km is 30% smaller for GRACE-A than CHAMP, indicating that the GRACE-A measurements are more accurate. Assimilating the GPSRO measurements improves stratospheric temperatures in the Southern Hemisphere. The combined impact of GRACE-A and CHAMP is greater than assimilating either instrument individually. Copyright © 2007 Royal Meteorological Society [source]