Home About us Contact | |||
Stratigraphic Architecture (stratigraphic + architecture)
Selected AbstractsSequence stratigraphy of the upper Millstone Grit (Yeadonian, Namurian), North WalesGEOLOGICAL JOURNAL, Issue 5 2007Rhodri M. Jerrett Abstract The upper Millstone Grit strata (Yeadonian, Namurian) of North Wales have been studied using sedimentological facies analysis and sequence stratigraphy. These strata comprise two cyclothems, each containing prodelta shales (Holywell Shale) that pass gradationally upwards into delta-front and delta-plain deposits (Gwespyr Sandstone Formation). The deltas formed in shallow water (<100,m), were fluvial-dominated, had elongate and/or sheet geometries and are assigned to highstand systems tracts. Two delta complexes with distinctive sandstone petrographies are identified: (1) a southerly derived, quartzose delta complex sourced locally from the Wales-Brabant Massif, and (2) a feldspathic delta complex fed by a regional source(s) to the north and/or west. The feldspathic delta complex extended further south in the younger cyclothem. A multistorey braided-fluvial complex (Aqueduct Grit, c. 25,m thick) is assigned to a lowstand systems tract, and occupies an incised valley that was eroded into the highstand feldspathic delta complex in the younger cyclothem. A candidate incised valley cut into the highstand feldspathic delta complex in the older cyclothem is also tentatively identified. Transgressive systems tracts are thin (<5,m) and contain condensed fossiliferous shales (marine bands). The high-resolution sequence stratigraphic framework interpreted for North Wales can be readily traced northwards into the Central Province Basin (,Pennine Basin'), supporting the notion that high-frequency, high-magnitude sea-level changes were the dominant control on stratigraphic architecture. Copyright © 2007 John Wiley & Sons, Ltd. [source] Stratigraphic Control of Flow and Transport CharacteristicsGROUND WATER, Issue 6 2006Dwaine Edington Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low,total accommodation environments and longer travel times in high,total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence. [source] POROSITY DESTRUCTION IN CARBONATE PLATFORMSJOURNAL OF PETROLEUM GEOLOGY, Issue 1 2006S. N. Ehrenberg The important thing to understand about carbonate diagenesis is not how porosity is created, but how it is destroyed. Detailed core observations from two deeply-buried carbonate platform successions (the Finnmark platform, offshore north Norway; and the Khuff Formation, offshore Iran) show that in both cases most vertical porosity variation can be accounted for by only two or three factors, namely: (1) stylolite frequency, (2) proportion of argillaceous beds, and (3) anhydrite cement. The spatial distribution of these factors is determined by the depositional distribution of clay minerals (important for localizing chemical compaction) and the occurrence of hypersaline depositional conditions and associated brine reflux (important for localizing anhydrite precipitation and dolomitisation). However, the intensity of chemical compaction and consequent porosity loss in adjacent beds by carbonate cementation also depend upon thermal exposure (temperature as a function of time). Evidence from the Finnmark platform and other examples indicate that the stratigraphic distribution of early-formed dolomite is also important for porosity preservation during burial, but this factor is not apparent in the Khuff dataset. Insofar as the Finnmark and Khuff platforms can be regarded as representative of carbonate reservoirs in general, recognition of the above porosity-controlling factors may provide the basis for general models predicting carbonate reservoir potential both locally (reservoir-model scale) and regionally (exploration-scale). Distributions of clay, anhydrite, and dolomitization should be predictable from stratigraphic architecture, whereas variations in thermal exposure can be mapped from basin analysis. In the present examples at least, factors that do not need to be considered include eogenetic carbonate cementation and dissolution, depositional facies (other than aspects related to clay and anhydrite content), and mesogenetic leaching to create late secondary porosity. [source] A Bayesian approach to inverse modelling of stratigraphy, part 1: methodBASIN RESEARCH, Issue 1 2009Karl Charvin ABSTRACT The inference of ancient environmental conditions from their preserved response in the sedimentary record still remains an outstanding issue in stratigraphy. Since the 1970s, conceptual stratigraphic models (e.g. sequence stratigraphy) based on the underlying assumption that accommodation space is the critical control on stratigraphic architecture have been widely used. Although these methods considered more recently other possible parameters such as sediment supply and transport efficiency, they still lack in taking into account the full range of possible parameters, processes, and their complex interactions that control stratigraphic architecture. In this contribution, we present a new quantitative method for the inference of key environmental parameters (specifically sediment supply and relative sea level) that control stratigraphy. The approach combines a fully non-linear inversion scheme with a ,process,response' forward model of stratigraphy. We formulate the inverse problem using a Bayesian framework in order to sample the full range of possible solutions and explicitly build in prior geological knowledge. Our methodology combines Reversible Jump Markov chain Monte Carlo and Simulated Tempering algorithms which are able to deal with variable-dimensional inverse problems and multi-modal posterior probability distributions, respectively. The inverse scheme has been linked to a forward stratigraphic model, BARSIM (developed by Joep Storms, University of Delft), which simulates shallow-marine wave/storm-dominated systems over geological timescales. This link requires the construction of a likelihood function to quantify the agreement between simulated and observed data of different types (e.g. sediment age and thickness, grain size distributions). The technique has been tested and validated with synthetic data, in which all the parameters are specified to produce a ,perfect' simulation, although we add noise to these synthetic data for subsequent testing of the inverse modelling approach. These tests addressed convergence and computational-overhead issues, and highlight the robustness of the inverse scheme, which is able to assess the full range of uncertainties on the inferred environmental parameters and facies distributions. [source] |