Home About us Contact | |||
Stick Insect (stick + insect)
Selected AbstractsControl of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheelDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Jens Peter Gabriel Abstract In the present study, motoneurons innervating the flexor tibiae muscle of the stick insect (Cuniculina impigra) middle leg were recorded intracellularly while the single leg performed walking-like movements on a treadwheel. Different levels of belt friction (equivalent to a change in load) were used to study the control of activity of flexor motoneurons. During slow leg movements no fast motoneurons were active, but a recruitment of these neurons could be observed during faster leg movements. The firing rate of slow and fast motoneurons increased with incremented belt friction. Also, the force applied to the treadwheel at different frictional levels was adapted closely to the friction of the treadwheel to be overcome. The motoneurons innervating the flexor tibiae were recruited progressively during the stance phase, with the slow motoneurons being active earlier than the fast (half-maximal spike frequency after 10,15% and 50,60% of the stance phase, respectively). The resting membrane potential was more hyperpolarized in fast motoneurons (64.6 ± 6.5 mV) than in slow motoneurons (,52.9 ± 5.4 mV). However, the threshold for the initiation of action potentials was not statistically significantly different in both types of flexor motoneurons. Therefore, action potentials were generated in fast motoneurons after a longer period of depolarization and thus later during the stance phase than in slow motoneurons. We show that motoneurons of the flexor tibiae receive substantial common excitatory inputs during the stance phase and that the difference in resting membrane potential between slow and fast motoneurons is likely to play a crucial role in their consecutive recruitment. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 237,251, 2003 [source] Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking systemDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003Ulrich Bässler Abstract The influence of vibratory signals from the femoral chordotonal organ fCO on the activities of muscles and motoneurons in the three main leg joints of the stick insect leg, i.e., the thoraco,coxal (TC) joint, the coxa,trochanteral (CT) joint, and the femur,tibia (FT) joint, was investigated when the animal was in the active behavioral state. Vibration stimuli induced a switch in motor activity (phase transition), for example, in the FT joint motor activity switched from flexor tibiae to extensor tibiae or vice versa. Similarly, fCO vibration induced phase transitions in both directions between the motoneuron pools of the TC joint and the CT joint. There was no correlation between the directions of phase transition in different joints. Vibration stimuli presented during simultaneous fCO elongation terminated the reflex reversal motor pattern in the FT joint prematurely by activating extensor and inactivating flexor tibiae motoneurons. In legs with freely moving tibia, fCO vibration promoted phase transitions in tibial movement. Furthermore, ground vibration promoted stance,swing transitions as long as the leg was not close to its anterior extreme position during stepping. Our results provide evidence that, in the active behavioral state of the stick insect, vibration signals can access the rhythm generating or bistable networks of the three main leg joints and can promote phase transitions in motor activity in both directions. The results substantiate earlier findings on the modular structure of the single-leg walking pattern generator and indicate a new mechanism of how sensory influence can contribute to the synchronization of phase transitions in adjacent leg joints independent of the walking direction. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 125,138, 2003 [source] Degenerative and regenerative processes involved in midgut pseudotumor formation in the stick insect (Carausius morosus)JOURNAL OF MORPHOLOGY, Issue 12 2009Paul Hoffmann Abstract Spontaneous and experimentally induced pseudotumor formation in Carausius morosus impairs the midgut tissue homeostasis. Spontaneous pseudotumor formation begins by the break down of a single or a small group of columnar cells (CCs) and is followed by the degeneration of neighboring CCs. There are not only marked similarities but also decisive differences between normal dying CCs in healthy specimens and the degeneration of CCs leading to pseudotumors: in both cases, the apical cell parts with the nucleus are extruded into the midgut lumen, but only during of pseudotumor formation an "amorphous substance" originates from the basal parts of the CCs. Hemocytes are attracted to this substance and form a nodule-like aggregation, which is responsible for the phenotype of pseudotumors. Pseudotumor infestation has also an impact on the midgut nidi, which consist of an intestinal stem cell and several CC progenitor cells. In healthy specimens only one progenitor cell per nidus differentiates at a time, but, several to all progenitor cells differentiate simultaneously in pseudotumor-infested specimens. Extirpation of the ingluvial ganglion in healthy specimens results in an immediate onset of pseudotumor formation and a dramatic acceleration of pseudotumor growth. Importantly, the ultrastructural characteristics of spontaneous and experimentally induced pseudotumors are identical. This supports the idea that the stomatogastric nervous system plays an integral role in the maintenance of midgut tissue homeostasis. J. Morphol., 2009. © 2009 Wiley-Liss, Inc. [source] |