Stem Cells Isolated (stem + cell_isolated)

Distribution by Scientific Domains


Selected Abstracts


Progenitor and stem cells for bone and cartilage regeneration

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 5 2009
M. K. El Tamer
Abstract Research in regenerative medicine is developing at a significantly quick pace. Cell-based bone and cartilage replacement is an evolving therapy aiming at the treatment of patients who suffer from limb amputation, damaged tissues and various bone and cartilage-related disorders. Stem cells are undifferentiated cells with the capability to regenerate into one or more committed cell lineages. Stem cells isolated from multiple sources have been finding widespread use to advance the field of tissue repair. The present review gives a comprehensive overview of the developments in stem cells originating from different tissues and suggests future prospects for functional bone and cartilage tissue regeneration. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Murine mesenchymal stem cells isolated by low density primary culture system

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2006
Mohamadreza Baghaban Eslaminejad
Murine mesenchymal stem cells (mMSC) and the difficult task of isolation and purification of them have been the subject of rather extensive investigation. The present study sought to isolate these cells from two different mouse strains, one outbred and the other inbred, primarily through a relatively simple but novel approach, the most important feature of which was the low density primary culture of bone marrow cells. For this purpose, mononuclear cells from either NMRI or BALB/c bone marrow were plated at about 500 cells per well of 24-well plates and incubated for 7 days. At this point, the fibroblastic clones that had emerged were pooled together and expanded through several subcultures. To investigate the mesenchymal nature, we differentiated the cells into the osteoblastic, chondrocytic and adipocytic lineages in different subcultures up to passage 10. According to the results, 1 week after culture initiation, several clones each comprising several fibroblastic cells appeared in each plate. The cells from different passages were capable of differentiating into corresponding skeletal tissues. In the present investigation, the best culture condition for maximum proliferation and also the expression of certain surface marker on isolated cells were examined. In this term the two murine strains showed some differences. [source]


Development of Live Cell Chips to Monitor Cell Differentiation Processes

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2008
C. Maercker
Abstract A big demand exists for high-throughput functional in vitro assays which can measure cellular phenotypes by molecular methods and therefore improve the resources of primary cells for cell therapy, tissue engineering and high-content screenings in drug development. This approach focuses on cellular adhesion which is an important differentiation process during homing of stem cells. Moreover, it is a promising method especially for adherent cells which are not accessible by classical cell sorting methods. The chip design includes a housing with electrodes to measure electric field densities and impedance, respectively. Moreover, specific coatings of the wells permit a perfect growth of the selected cell types. In parallel, protein biomarkers can be followed by light microscopy. So far, experiments have been started to discriminate between different cell densities and cell types. In addition, after stimulating human cardiac fibroblasts and human umbilical vein endothelial cells, concentrations of proteins involved in adhesion had been increased, and proteins were translocated within the cells. In ongoing experiments, different human cell lines and fibroblastoid mesenchymal stem cells isolated from fat tissue, umbilical cord, or bone marrow are tested in the chip. To optimize the adhesion conditions, the surfaces within the vials of the chip were specifically activated. Microscopy was adjusted to be able to measure cellular morphology in parallel. This concept allows to identify the behavior of mesenchymal stem cells, which cannot be described so far by standard biomarkers. In addition, simulation of the homing process of the cells within its stem cell niche in an in vitro assay is a promising setup for large-scale gain-of-function or loss-of-function screenings in functional genomics as well as for generating precursor cells relevant for the therapy of various diseases. [source]


Cells from bone marrow that evolve into oral tissues and their clinical applications

ORAL DISEASES, Issue 1 2007
OM Maria
There are two major well-characterized populations of post-natal (adult) stem cells in bone marrow: hematopoietic stem cells which give rise to blood cells of all lineages, and mesenchymal stem cells which give rise to osteoblasts, adipocytes, and fibroblasts. For the past 50 years, strict rules were taught governing developmental biology. However, recently, numerous studies have emerged from researchers in different fields suggesting the unthinkable , that stem cells isolated from a variety of organs are capable of ignoring their cell lineage boundaries and exhibiting more plasticity in their fates. Plasticity is defined as the ability of post-natal (tissue-specific adult) stem cells to differentiate into mature and functional cells of the same or of a different germ layer of origin. There are reports that bone marrow stem cells can evolve into cells of all dermal lineages, such as hepatocytes, skeletal myocytes, cardiomyocytes, neural, endothelial, epithelial, and even endocrine cells. These findings promise significant therapeutic implications for regenerative medicine. This article will review recent reports of bone marrow cells that have the ability to evolve or differentiate into oral and craniofacial tissues, such as the periodontal ligament, alveolar bone, condyle, tooth, bone around dental and facial implants, and oral mucosa. [source]


Comparative proteomic analysis of human mesenchymal and embryonic stem cells: Towards the definition of a mesenchymal stem cell proteomic signature

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2009
Stephane Roche
Abstract Mesenchymal stem cells (MSC) are adult multipotential progenitors which have a high potential in regenerative medicine. They can be isolated from different tissues throughout the body and their homogeneity in terms of phenotype and differentiation capacities is a real concern. To address this issue, we conducted a 2-DE gel analysis of mesenchymal stem cells isolated from bone marrow (BM), adipose tissue, synovial membrane and umbilical vein wall. We confirmed that BM and adipose tissue derived cells were very similar, which argue for their interchangeable use for cell therapy. We also compared human mesenchymal to embryonic stem cells and showed that umbilical vein wall stem cells, a neo-natal cell type, were closer to BM cells than to embryonic stem cells. Based on these proteomic data, we could propose a panel of proteins which were the basis for the definition of a mesenchymal stem cell proteomic signature. [source]