Home About us Contact | |||
Stellar Haloes (stellar + halo)
Selected AbstractsStellar haloes and elliptical galaxy formation: origin of dynamical properties of the planetary nebula systemsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006Kenji Bekki ABSTRACT Recent spectroscopic observations of planetary nebulae (PNe) in several elliptical galaxies have revealed structural and kinematical properties of the outer stellar halo regions. In order to elucidate the origin of the properties of these planetary nebula systems (PNSs), we consider the merger scenario in which an elliptical galaxy is formed by merging of spiral galaxies. Using numerical simulations, we particularly investigate radial profiles of projected PN number densities, rotational velocities and velocity dispersions of PNSs extending to the outer halo regions of elliptical galaxies formed from major and unequal-mass merging. We find that the radial profiles of the project number densities can be fitted to the power law and the mean number density in the outer haloes of the ellipticals can be more than an order of magnitude higher than that of the original spiral's halo. The PNSs are found to show a significant amount of rotation (V/, > 0.5) in the outer halo regions (R > 5Re) of the ellipticals. Two-dimensional velocity fields of PNSs are derived from the simulations and their dependences on model parameters of galaxy merging are discussed in detail. We compare the simulated kinematics of PNSs with that of the PNS observed in NGC 5128 and thereby discuss advantages and disadvantages of the merger model in explaining the observed kinematics of the PNS. We also find that the kinematics of PNSs in elliptical galaxies are quite diverse depending on the orbital configurations of galaxy merging, the mass ratio of merger progenitor spirals and the viewing angle of the galaxies. This variation translates directly into possible biases by a factor of 2 in observational mass estimation. However, the biases in the total mass estimates can be even larger. The best case systems viewed edge-on can appear to have masses lower than their true mass by a factor of 5, which suggests that current observational studies on PN kinematics of elliptical galaxies can significantly underestimate their real masses. [source] Stellar archaeology: Exploring the Universe with metal-poor starsASTRONOMISCHE NACHRICHTEN, Issue 5 2010A. Frebel Abstract The abundance patterns of the most metal-poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star- and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of "stellar archaeology" , the diverse use of metal-poor stars to explore the high-redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron-poor stars is for learning about Population III supernovae yields. Rapid neutron-capture signatures found in metal-poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal-poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal-poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Photometric properties and scaling relations of early-type Brightest Cluster GalaxiesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008F. S. Liu ABSTRACT We investigate the photometric properties of the early-type Brightest Cluster Galaxies (BCGs) using a carefully selected sample of 85 BCGs from the C4 cluster catalogue with a redshift of less than 0.1. We perform accurate background subtractions and surface photometry for these BCGs to 25 mag arcsec,2 in the Sloan r band. By quantitatively analysing the gradient of the Petrosian profiles of BCGs, we find that a large fraction of BCGs have extended stellar envelopes in their outskirts; more luminous BCGs tend to have more extended stellar haloes that are likely to be connected with mergers. A comparison sample of elliptical galaxies was chosen with similar apparent magnitude and redshift ranges, for which the same photometric analysis procedure is applied. We find that BCGs have steeper size,luminosity (R,L,) and Faber,Jackson (L,,,) relations than the bulk of early-type galaxies. Furthermore, the power-law indices (, and ,) in these relations increase as the isophotal limits become deeper. For isophotal limits from 22 to 25 mag arcsec,2, BCGs are usually larger than the bulk of early-type galaxies, and a large fraction (,49 per cent) of BCGs have discy isophotal shapes. The differences in the scaling relations are consistent with a scenario where the dynamical structure and formation route of BCGs may be different from the bulk of early-type galaxies; in particular dry (dissipationless) mergers may play a more important role in their formation. We highlight several possible dry merger candidates in our sample. [source] Haloes around edge-on disc galaxies in the Sloan Digital Sky SurveyMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004Stefano Zibetti ABSTRACT We present a statistical analysis of halo emission for a sample of 1047 edge-on disc galaxies imaged in five bands by the Sloan Digital Sky Survey (SDSS). Stacking the homogeneously rescaled images of the galaxies, we can measure surface brightnesses as deep as ,r, 31 mag arcsec,2. The results strongly support the almost ubiquitous presence of stellar haloes around disc galaxies, whose spatial distribution is well described by a power law ,,r,3, in a moderately flattened spheroid (c/a, 0.6). The colour estimates in g,r and r,i, although uncertain, give a clear indication for extremely red stellar populations, hinting at old ages and/or non-negligible metal enrichment. These results support the idea of haloes being assembled via early merging of satellite galaxies. [source] |