Steady Flow (steady + flow)

Distribution by Scientific Domains


Selected Abstracts


Scalable real-time animation of rivers

COMPUTER GRAPHICS FORUM, Issue 2 2009
Qizhi Yu
Many recent games and applications target the interactive exploration of realistic large scale worlds. These worlds consist mostly of static terrain models, as the simulation of animated fluids in these virtual worlds is computationally expensive. Adding flowing fluids, such as rivers, to these virtual worlds would greatly enhance their realism, but causes specific issues: as the user is usually observing the world at close range, small scale details such as waves and ripples are important. However, the large scale of the world makes classical methods impractical for simulating these effects. In this paper, we present an algorithm for the interactive simulation of realistic flowing fluids in large virtual worlds. Our method relies on two key contributions: the local computation of the velocity field of a steady flow given boundary conditions, and the advection of small scale details on a fluid, following the velocity field, and uniformly sampled in screen space. [source]


Pedotransfer functions for solute transport parameters of Portuguese soils

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2001
M. C. Gonc, alves
Summary The purpose of this study is to quantify solute transport parameters of fine-textured soils in an irrigation district in southern Portugal and to investigate their prediction from basic soil properties and unsaturated hydraulic parameters. Solute displacement experiments were carried out on 24 undisturbed soil samples by applying a 0.05 m KCl pulse during steady flow. The chloride breakthrough curves (BTCs) were asymmetric, with early breakthrough and considerable tailing characteristic of non-equilibrium transport. The retardation factor (R), dispersion coefficient (D), partitioning coefficient (,), and mass transfer coefficient (,) were estimated by optimizing the solution of the non-equilibrium convection,dispersion equation (CDE) to the breakthrough data. The solution could adequately describe the observed data as proved by a median of 0.972 for the coefficient of determination (r2) and a median for the mean squared error (MSE) of 5.1 × 10,6. The median value for R of 0.587 suggests that Cl, was excluded from a substantial part of the liquid phase. The value for , was typically less than 0.5, but the non-equilibrium effects were mitigated by a large mass transfer coefficient (, > 1). Pedotransfer functions (PTFs) were developed with regression and neural network analyses to predict R, D, , and , from basic soil properties and unsaturated hydraulic parameters. Fairly accurate predictions could be obtained for logD (r2 , 0.9) and , (r2 , 0.8). Prediction for R and log, were relatively poor (r2 , 0.5). The artificial neural networks were all somewhat more accurate than the regression equations. The networks are also more suitable for predicting transport parameters because they require only three input variables, whereas the regression equations contain many predictor variables. [source]


Heat transportation by oscillatory flow with steady flow component

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 7 2006
Akira Inukai
Abstract This paper deals with heat transportation by an oscillatory flow composed of a sinusoidal oscillatory flow superimposed with a steady flow. Velocity and temperature fields, heat transportation rate, work rate, and heat transportation efficiency were investigated through numerical analysis. Results obtained elucidated that (1) the phase difference between velocity and temperature variation remained the same as that of the sinusoidal reciprocal flow without the use of a steady flow component. (2) In the upstream direction heat was mainly transported by the steady flow component and in the downstream direction transportation was mainly performed by the oscillatory flow component. (3) The heat transportation rate of the present oscillatory flow composed of both steady and oscillatory flow components was less than the arithmetic sum of the rates produced by the steady flow and the sinusoidal oscillatory flow. (4) The heat transportation rate was increased immensely by superimposing the steady flow on the sinusoidal oscillatory flow. (5) Conversely, work done by the present oscillatory flow increased only slightly. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(7): 482,500, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20130 [source]


An investigation of pulsatile flow in a model cavo-pulmonary vascular system

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 11 2009
K. Chitra
Abstract The complexities in the flow pattern in a cavo-pulmonary vascular system,after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T-junction,are analysed. A characteristic-based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo-pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long-term health of the surgically corrected TCPC. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 12 2007
P. Nithiarasu
Abstract In this paper, numerical investigation of airflow through a human upper airway is presented using an unstructured-based characteristic-based split (CBS) scheme. The CBS scheme used in the present study employs a fully explicit matrix-free solution procedure along with artificial compressibility. A one equation Spalrat,Allmaras (SA) turbulence model is employed to study low and moderate Reynolds number flows. A detailed discussion of the qualitative and quantitative results is presented. The results show a strong influence of the Reynolds number on the flow pattern and quantities of interest, pressure drop and wall shear stress. It is also apparent that SA model can be employed on unstructured meshes to predict the steady flow with good accuracy. Thus, the novelties of the present paper are: use of the unstructured mesh-based solution algorithm and the successful application of the SA model to a typical human upper airway. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Analysis of velocity equation of steady flow of a viscous incompressible fluid in channel with porous walls

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2010
M. Babaelahi
Abstract Steady flow of a viscous incompressible fluid in a channel, driven by suction or injection of the fluid through the channel walls, is investigated. The velocity equation of this problem is reduced to nonlinear ordinary differential equation with two boundary conditions by appropriate transformation and convert the two-point boundary-value problem for the similarity function into an initial-value problem in which the position of the upper channel. Then obtained differential equation is solved analytically using differential transformation method and compare with He's variational iteration method and numerical solution. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and sciences. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Numerical study of an inviscid incompressible flow through a channel of finite length

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2009
Vasily N. Govorukhin
Abstract A two-dimensional inviscid incompressible flow in a rectilinear channel of finite length is studied numerically. Both the normal velocity and the vorticity are given at the inlet, and only the normal velocity is specified at the outlet. The flow is described in terms of the stream function and vorticity. To solve the unsteady problem numerically, we propose a version of the vortex particle method. The vorticity field is approximated using its values at a set of fluid particles. A pseudo-symplectic integrator is employed to solve the system of ordinary differential equations governing the motion of fluid particles. The stream function is computed using the Galerkin method. Unsteady flows developing from an initial perturbation in the form of an elliptical patch of vorticity are calculated for various values of the volume flux of fluid through the channel. It is shown that if the flux of fluid is large, the initial vortex patch is washed out of the channel, and when the flux is reduced, the initial perturbation evolves to a steady flow with stagnation regions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Numerical simulation of vortical ideal fluid flow through curved channel

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2003
N. P. Moshkin
Abstract A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka,Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented. Copyright © 2003 John Wiley & Sons, Ltd. [source]


A finite volume solver for 1D shallow-water equations applied to an actual river

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2002
N. Gouta
Abstract This paper describes the numerical solution of the 1D shallow-water equations by a finite volume scheme based on the Roe solver. In the first part, the 1D shallow-water equations are presented. These equations model the free-surface flows in a river. This set of equations is widely used for applications: dam-break waves, reservoir emptying, flooding, etc. The main feature of these equations is the presence of a non-conservative term in the momentum equation in the case of an actual river. In order to apply schemes well adapted to conservative equations, this term is split in two terms: a conservative one which is kept on the left-hand side of the equation of momentum and the non-conservative part is introduced as a source term on the right-hand side. In the second section, we describe the scheme based on a Roe Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the essential point of the numerical modelisation is described. The source term is split in two components: one is upwinded and the other is treated according to a centred discretization. By using this method for the discretization of the source term, one gets the right behaviour for steady flow. Finally, in the last part, the problem of validation is tackled. Most of the numerical tests have been defined for a working group about dam-break wave simulation. A real dam-break wave simulation will be shown. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Finite volume multigrid method of the planar contraction flow of a viscoelastic fluid

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 8 2001
H. Al Moatssime
Abstract This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss,Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Parallel-beam X-ray diffractometry using X-ray guide tubes

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2000
Toyoko Yamanoi
A parallel-beam X-ray diffraction geometry using X-ray guide tubes is proposed to eliminate preferred-orientation effects in powder X-ray diffraction (XRD) patterns and for new applications of XRD. A bundle of X-ray guide tubes (polycapillaries) is used to provide an intense quasi-parallel (approximately 0.2° divergence) and large-diameter (approximately 20,mm) beam of X-rays needed for parallel-beam diffractometry. Mica and silicon particles were agitated inside a cylindrical chamber by a steady flow of N2 gas so that they were randomly oriented. The quasi-parallel incident X-ray beam passed through the cloud of floating particles. The diffracted X-rays were detected using a standard 2, diffractometer. The integrated intensities observed agree well with those calculated from the known model of the crystal structure. This result demonstrates that this type of diffractometry is capable of avoiding preferred-orientation effects and of collecting XRD data for moving powder samples. [source]


Estimation of the differential pressure at renal artery stenoses,

MAGNETIC RESONANCE IN MEDICINE, Issue 5 2004
Peter J. Yim
Abstract Atherosclerotic disease of the renal artery can lead to reduction in arterial caliber and ultimately to conditions including renovascular hypertension. Renal artery stenosis is conventionally assessed, using angiography, according to the severity of the stenosis. However, the severity of a stenosis is not a reliable indicator of functional significance, or associated differential pressure, of a stenosis. A methodology is proposed for estimation of the renal artery differential pressure (RADP) from MR imaging. Realistic computational fluid dynamics (CFD) models are constructed from MR angiography (MRA) and phase-contrast (PC) MR. The CFD model is constructed in a semiautomated manner from the MR images using the Isosurface Deformable Model (IDM) for surface reconstruction and a Marching Front algorithm for construction of the volumetric CFD mesh. Validation of RADP estimation was performed in a realistic physical flow-through model. Under steady flow, the CFD estimate of the differential pressure across a stenosis in the physical flow-through model differed by an average of 5.5 mmHg from transducer measurements of the pressure differential, for differential pressures less than 60 mmHg. These results demonstrate that accurate estimates of differential pressure at stenoses may be possible based only on structural and flow images. Magn Reson Med 51:969,977, 2004. Published 2004 Wiley-Liss, Inc. [source]


Hall effects for MHD Oldroyd 6-constant fluid flows using finite element method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2009
M. Sajid
Abstract This paper numerically investigates the influence of Hall current on the steady flows of an Oldroyd 6-constant fluid between concentric cylinders. The flow analysis has been performed by employing finite element method. Two flow problems are considered. These problems have been recently solved by Rana et al. (Chaos, Solitons and Fractals, in press). Here the main equation governing the flow problems in (Chaos, Solitons and Fractals, in press) is corrected first and then used in the simulation. Finally, the interesting observations are obtained by plotting graphs. Copyright © 2008 John Wiley & Sons, Ltd. [source]