Home About us Contact | |||
State Intramolecular Proton Transfer (state + intramolecular_proton_transfer)
Selected AbstractsExcited State Intramolecular Proton Transfer of New Diphenyl- ethylene Derivatives Bearing Imino Group: A Combination of Experimental and Theoretical InvestigationCHINESE JOURNAL OF CHEMISTRY, Issue 7 2010Fang Gao Abstract In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2-[(4,- N,N -dimethylamino-diphenylethylene-4-ylimino)methyl]phenol (C1) and 4-[(4,- N,N -dimethylamino-diphenylethylene-4-ylimino)methyl]phenol (C2) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well-separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red-shift with respect to those of C2, the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree-Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2, including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s,1) of C1 was much lower than that of salicylidene methylamine (C3, 2.045×1015 s,1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation. [source] Photoinduced Excited State Intramolecular Proton Transfer of New Schiff Base Derivatives with Extended Conjugated Chromophores: A Comprehensive Theoretical SurveyCHINESE JOURNAL OF CHEMISTRY, Issue 6 2010Qi Wang Abstract This paper presented comprehensive theoretical investigation of excited state intramolecular proton transfer (ESIPT) of four new large Schiff base derivatives with extended conjugated chromophores. The properties of the ground state and the excited state of phototautomers of C1 to C4 [C1: 2-(4,-nitro-stilbene-4-ylimino)methylphenol; C2: 2-(4,-cyano-stilbene-4-ylimino)methylphenol; C3: 2-(4,-methoxyl-stilbene-4-ylimino)methylphenol; C4: 2-(4,- N,N -diethylamino-stilbene-4-ylimino)methylphenol], which included geometrical parameter, energy, rate constant, frontier orbit, Mulliken charge, dipole moment change, were studied by DFT (density functional theory), CIS (configuration interaction singles-excitation), TDDFT (time-dependent DFT) methods to analyze the effects of chromophore part on the occurrence of ESIPT and the role of substituent groups. The structural parameter calculation showed that the shorter RHN and larger ROH from enol to enol* form, and less twisted configuration in the excited state implied that these molecules could undergo ESIPT as excitation. Stable transition states and a low energy barrier were observed for C1 to C4. This suggested that chromophore part increased some difficulty to undergo ESIPT for these molecules, while the possibility of occurrence of ESIPT was quite high. The negative ,E* (,9.808 and ,9.163 kJ/mol) of C1 and C2 and positive ,E* (0.599 and 1.029 kJ/mol) of C3 and C4 indicated that withdrawing substituent groups were favorable for the occurrence of ESIPT. The reaction rate constants of proton transfer of these compounds were calculated in the S0 and S1 states respectively, and the high rate constants of these compounds were observed at S1 state. C1 even reached at 1.45×1015 s,1 in the excited state, which is much closed to 2.05×1015 s,1 of the parent moiety (salicylidene methylamine). Electron-donating and electron-withdrawing substituent groups had different effects on the electron density distribution of frontier orbits and Mulliken charges of the atoms, resulting in different dipole moment changes in enol*,keto* process. These differences in turn suggested that C1 and C2 had more ability to undergo ESIPT than C3 and C4. The ultraviolet/visible absorption spectra, normal fluorescence emission spectra and ESIPT fluorescence emission spectra of these compounds were predicted in theory. [source] Syntheses and photophysical properties of some 4-arylpyridinium saltsJOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 1 2001Charles J. Kelley A number of 4-arylpyridines, many methoxy substituted, were prepared by an efficient two-step method involving aryl Grignard addition to 1-methyl-4-piperidone and direct aromatization of the resulting 4-aryl-4-piperidinols. The pyridines were N -alkylated to give sulfonate salts desired for their fluorescent properties. Study of selected compounds as laser dyes revealed several structures to be efficient dyes lasing in the 530-550 nm range. Two new diazaquaterphenyls were prepared and were quaternized. These salts exhibited intense fluorescence in the 420-450 nm range, but would not lase. A phenolic azaterphenyl suitably substituted for excited state intramolecular proton transfer (ESIPT) did not fluoresce at all. [source] Synthesis of imidazole-containing conjugated polymers bearing phenol unit as side group and excited state intramolecular proton transfer-mediated fluorescenceJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2009Koji Takagi Abstract Dibromobenzimidazole and dibromoimidazole bearing hydroxyl group-protected phenol unit (1 and 2) were prepared and they showed an intramolecular hydrogen bonding between ether oxygen and amino proton of imidazole. The palladium-catalyzed Suzuki coupling polymerization of 1 and 2 with benzene bis(boronic acid) derivatives gave soluble polymers (3 and 4), where the molecular weights were limited probably due to the coordination ability of imidazole to palladium metal. The phenol hydroxyl groups were subsequently deprotected using BBr3 to obtain 3, and 4,. From the 1H NMR spectra, the complete conversion to the hydroxyl group and the formation of another type of intramolecular hydrogen bonding between hydroxyl proton and imine nitrogen were confirmed. In the UV and PL spectra of 3, and 4,, the excited state intramolecular proton transfer (ESIPT) occurred to shift the emission spectra toward lower energy region compared to 3 and 4. Especially, the PL spectrum of 3, demonstrated large stokes shift (145 nm) in THF solution. The ESIPT-mediated fluorescence was influenced by the addition of methanol and trifluoroacetic acid, which inhibited the formation of intramolecular hydrogen bonding. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4822,4829, 2009 [source] Photoinduced Excited State Intramolecular Proton Transfer of New Schiff Base Derivatives with Extended Conjugated Chromophores: A Comprehensive Theoretical SurveyCHINESE JOURNAL OF CHEMISTRY, Issue 6 2010Qi Wang Abstract This paper presented comprehensive theoretical investigation of excited state intramolecular proton transfer (ESIPT) of four new large Schiff base derivatives with extended conjugated chromophores. The properties of the ground state and the excited state of phototautomers of C1 to C4 [C1: 2-(4,-nitro-stilbene-4-ylimino)methylphenol; C2: 2-(4,-cyano-stilbene-4-ylimino)methylphenol; C3: 2-(4,-methoxyl-stilbene-4-ylimino)methylphenol; C4: 2-(4,- N,N -diethylamino-stilbene-4-ylimino)methylphenol], which included geometrical parameter, energy, rate constant, frontier orbit, Mulliken charge, dipole moment change, were studied by DFT (density functional theory), CIS (configuration interaction singles-excitation), TDDFT (time-dependent DFT) methods to analyze the effects of chromophore part on the occurrence of ESIPT and the role of substituent groups. The structural parameter calculation showed that the shorter RHN and larger ROH from enol to enol* form, and less twisted configuration in the excited state implied that these molecules could undergo ESIPT as excitation. Stable transition states and a low energy barrier were observed for C1 to C4. This suggested that chromophore part increased some difficulty to undergo ESIPT for these molecules, while the possibility of occurrence of ESIPT was quite high. The negative ,E* (,9.808 and ,9.163 kJ/mol) of C1 and C2 and positive ,E* (0.599 and 1.029 kJ/mol) of C3 and C4 indicated that withdrawing substituent groups were favorable for the occurrence of ESIPT. The reaction rate constants of proton transfer of these compounds were calculated in the S0 and S1 states respectively, and the high rate constants of these compounds were observed at S1 state. C1 even reached at 1.45×1015 s,1 in the excited state, which is much closed to 2.05×1015 s,1 of the parent moiety (salicylidene methylamine). Electron-donating and electron-withdrawing substituent groups had different effects on the electron density distribution of frontier orbits and Mulliken charges of the atoms, resulting in different dipole moment changes in enol*,keto* process. These differences in turn suggested that C1 and C2 had more ability to undergo ESIPT than C3 and C4. The ultraviolet/visible absorption spectra, normal fluorescence emission spectra and ESIPT fluorescence emission spectra of these compounds were predicted in theory. [source] |