State Analogue (state + analogue)

Distribution by Scientific Domains

Kinds of State Analogue

  • transition state analogue


  • Selected Abstracts


    ChemInform Abstract: Synthesis of a Novel Diarylphosphinic Acid: A Distorted Ground State Mimic and Transition State Analogue for Amide Hydrolysis.

    CHEMINFORM, Issue 18 2002
    Marc Schuman
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    On the Generation of Catalytic Antibodies by Transition State Analogues

    CHEMBIOCHEM, Issue 4 2003
    Montserrat Barbany
    Abstract The effective design of catalytic antibodies represents a major conceptual and practical challenge. It is implicitly assumed that a proper transition state analogue (TSA) can elicit a catalytic antibody (CA) that will catalyze the given reaction in a similar way to an enzyme that would evolve (or was evolved) to catalyze this reaction. However, in most cases it was found that the TSA used produced CAs with relatively low rate enhancement as compared to the corresponding enzymes, when these exist. The present work explores the origin of this problem, by developing two approaches that examine the similarity of the TSA and the corresponding transition state (TS). These analyses are used to assess the proficiency of the CA generated by the given TSA. Both approaches focus on electrostatic effects that have been found to play a major role in enzymatic reactions. The first method uses molecular interaction potentials to look for the similarity between the TSA and the TS and, in principle, to help in designing new haptens by using 3D quantitative struture,activity relationships. The second and more quantitative approach generates a grid of Langevin dipoles, which are polarized by the TSA, and then uses the grid to bind the TS. Comparison of the resulting binding energy with the binding energy of the TS to the grid that was polarized by the TS provides an estimate of the proficiency of the given CA. Our methods are used in examining the origin of the difference between the catalytic power of the 1F7 CA and chorismate mutase. It is demonstrated that the relatively small changes in charge and structure between the TS and TSA are sufficient to account for the difference in proficiency between the CA and the enzyme. Apparently the environment that was preorganized to stabilize the TSA charge distribution does not provide a sufficient stabilization to the TS. The general implications of our findings and the difficulties in designing a perfect TSA are discussed. Finally, the possible use of our approach in screening for an optimal TSA is pointed out. [source]


    Synthesis of an Enzyme-like Imprinted Polymer with the Substrate as the Template, and Its Catalytic Properties under Aqueous Conditions

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 14 2004
    Zhiyong Cheng Dr.
    Abstract Transition state analogues (TSAs) have long been regarded as ideal templates for the preparation of catalytically active synthetic imprinted polymers. In the current work, however, a new type of molecularly imprinted polymer (MIP) was synthesized with the substrate (homovanillic acid, HVA) as the template and hemin introduced as the catalytic center, with the use of plural functional monomers to prepare the active sites. The MIP successfully mimicked natural peroxidase, suggesting that it may not be imperative to employ a TSA as the template when preparing enzyme-like imprinted polymers and that the imprinted polymer matrix provided an advantageous microenvironment around the catalytic center (hemin), essentially similar to that supplied by apo-proteins in natural enzymes. Significantly, by taking advantage of the special structure of hemin and multiple-site interactions provided by several functional monomers, the intrinsic difficulties for MIPs in recognizing template molecules in polar solutions were overcome. The newly developed polymer showed considerable recognizing ability toward HVA, catalytic activity, substrate specificity and also stability, which are the merits lacked by the natural peroxidase. Meanwhile, the ease of recovery and reuse the MIP implies the potential for industrial application. [source]