Starch Degradation (starch + degradation)

Distribution by Scientific Domains


Selected Abstracts


The legwd mutant uncovers the role of starch phosphorylation in pollen development and germination in tomato

THE PLANT JOURNAL, Issue 1 2009
Shai Nashilevitz
Summary Starches extracted from most plant species are phosphorylated. ,-Glucan water dikinase (GWD) is a key enzyme that controls the phosphate content of starch. In the absence of its activity starch degradation is impaired, leading to a starch excess phenotype in Arabidopsis and in potato leaves, and to reduced cold sweetening in potato tubers. Here, we characterized a transposon insertion (legwd::Ds) in the tomato GWD (LeGWD) gene that caused male gametophytic lethality. The mutant pollen had a starch excess phenotype that was associated with a reduction in pollen germination. SEM and TEM analyses indicated mild shrinking of the pollen grains and the accumulation of large starch granules inside the plastids. The level of soluble sugars was reduced by 1.8-fold in mutant pollen grains. Overall, the transmission of the mutant allele was only 0.4% in the male, whereas it was normal in the female. Additional mutant alleles, obtained through transposon excision, showed the same phenotypes as legwd::Ds. Moreover, pollen germination could be restored, and the starch excess phenotype could be abolished in lines expressing the potato GWD homolog (StGWD) under a pollen-specific promoter. In these lines, where fertility was restored, homozygous plants for legwd::Ds were isolated, and showed the starch excess phenotype in the leaves. Overall, our results demonstrate the importance of starch phosphorylation and breakdown for pollen germination, and open up the prospect for analyzing the role of starch metabolism in leaves and fruits. [source]


The inhibitory effects of berry polyphenols on digestive enzymes

BIOFACTORS, Issue 4 2005
Gordon J. Mcdougall
Abstract The evidence for the effect of polyphenol components of berries on digestive enzymes is reviewed. Anthocyanins inhibit ,-glucosidase activity and can reduce blood glucose levels after starch-rich meals, a proven clinical therapy for controlling type II diabetes. Ellagitannins inhibit ,-amylase activity and there is potential for synergistic effects on starch degradation after ingestion of berries such as raspberries and strawberries, which contain substantial amounts of ellagitannins and anthocyanins. A range of berry polyphenols (e.g. flavonols, anthocyanidins, ellagitannins and proanthocyanidins) can inhibit protease activities at levels which could affect protein digestion in the gastrointestinal tract. In contrast, potential for the inhibition of gastrointestinal lipase activity, a proven therapeutic target for the control of obesity through reduced fat digestion, may be limited to proanthocyanidins. Taking into account the manifold possible synergies for inhibition of starch, protein and/or lipid digestion by the spectrum of polyphenol components present within berry species, the inhibition of digestive enzymes by dietary polyphenols may represent an under-reported mechanism for delivering some of the health benefits attributed to a diet rich in fruit and vegetables. [source]


Starch phosphorylation,Maltosidic restrains upon 3,- and 6,-phosphorylation investigated by chemical synthesis, molecular dynamics and NMR spectroscopy

BIOPOLYMERS, Issue 3 2009
Peter I. Hansen
Abstract Phosphorylation is the only known in vivo substitution of starch, yet no structural evidence has been provided to explain its implications of the amylosidic backbone and its stimulating effects on starch degradation in plants. In this study, we provide evidence for a major influence on the glucosidic bond in starch specifically induced by the 3-O-phosphate. Two phosphorylated maltose model compounds were synthesized and subjected to combined molecular dynamics (MD) studies and 950 MHz NMR studies. The two phosphorylated disaccharides represent the two possible phosphorylation sites observed in natural starches, namely maltose phosphorylated at the 3,- and 6,-position (maltose-3,-O-phosphate and maltose-6,-O-phosphate). When compared with maltose, both of the maltose-phosphates exhibit a restricted conformational space of the ,(1,4) glycosidic linkage. When maltose is phosphorylated in the 3,-position, MD and NMR show that the glucosidic space is seriously restricted to one narrow potential energy well which is strongly offset from the global potential energy well of maltose and almost 50°degrees from the , angle of the ,-maltose crystal structure. The driving force is primarily steric, but the configuration of the structural waters is also significantly altered. Both the favored conformation of the maltose-3,-phosphate and the maltose-6,-phosphate align well into the 6-fold double helical structure of amylopectin when the effects on the glucosidic bond are not taken into account. However, the restrained geometry of the glucosidic linkage of maltose-3,-phosphate cannot be accommodated in the helical structure, suggesting a major local disturbing effect, if present in the starch granule semi-crystalline lattice. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 179,193, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Immobilization of a thermostable ,-amylase by covalent binding to an alginate matrix increases high temperature usability

BIOTECHNOLOGY PROGRESS, Issue 2 2009
Boon L. Tee
Abstract Thermostable ,-amylase was covalently bound to calcium alginate matrix to be used for starch hydrolysis at liquefaction temperature of 95°C. 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride (EDAC) was used as crosslinker. EDAC reacts with the carboxylate groups on the calcium alginate matrix and the amine groups of the enzyme. Ethylenediamine tetraacetic acid (EDTA) treatment was applied to increase the number of available carboxylate groups on the calcium alginate matrix for EDAC binding. After the immobilization was completed, the beads were treated with 0.1 M calcium chloride solution to reinstate the bead mechanical strength. Enzyme loading efficiency, activity, and reusability of the immobilized ,-amylase were investigated. Covalently bound thermostable ,-amylase to calcium alginate produced a total of 53 g of starch degradation/mg of bound protein after seven consecutive starch hydrolysis cycles of 10 min each at 95°C in a stirred batch reactor. The free and covalently bound ,-amylase had maximum activity at pH 5.5 and 6.0, respectively. The Michaelis-Menten constant (Km) of the immobilized enzyme (0.98 mg/mL) was 2.5 times greater than that of the free enzyme (0.40 mg/mL). The maximum reaction rate (Vmax) of immobilized and free enzyme were determined to be 10.4-mg starch degraded/mL min mg bound protein and 25.7-mg starch degraded/mL min mg protein, respectively. The high cumulative activity and seven successive reuses obtained at liquefaction temperature make the covalently bound thermostable ,-amylase to calcium alginate matrix, a promising candidate for use in industrial starch hydrolysis process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]