Starch Concentrations (starch + concentration)

Distribution by Scientific Domains


Selected Abstracts


The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides

GLOBAL CHANGE BIOLOGY, Issue 8 2005
Achim Walter
Abstract Image sequence processing methods were applied to study the effect of elevated CO2 on the diel leaf growth cycle for the first time in a dicot plant. Growing leaves of Populus deltoides, in stands maintained under ambient and elevated CO2 for up to 4 years, showed a high degree of heterogeneity and pronounced diel variations of their relative growth rate (RGR) with maxima at dusk. At the beginning of the season, leaf growth did not differ between treatments. At the end of the season, final individual leaf area and total leaf biomass of the canopy was increased in elevated CO2. Increased final leaf area at elevated CO2 was achieved via a prolonged phase of leaf expansion activity and not via larger leaf size upon emergence. The fraction of leaves growing at 30,40% day,1 was increased by a factor of two in the elevated CO2 treatment. A transient minimum of leaf expansion developed during the late afternoon in leaves grown under elevated CO2 as the growing season progressed. During this minimum, leaves grown under elevated CO2 decreased their RGR to 50% of the ambient value. The transient growth minimum in the afternoon was correlated with a transient depletion of glucose (less than 50%) in the growing leaf in elevated CO2, suggesting diversion of glucose to starch or other carbohydrates, making this substrate temporarily unavailable for growth. Increased leaf growth was observed at the end of the night in elevated CO2. Net CO2 exchange and starch concentration of growing leaves was higher in elevated CO2. The extent to which the transient reduction in diel leaf growth might dampen the overall growth response of these trees to elevated CO2 is discussed. [source]


RADIO FREQUENCY (RF) HEATING OF STARCH SOLUTIONS UNDER CONTINUOUS FLOW CONDITIONS: EFFECT OF SYSTEM AND PRODUCT PARAMETERS ON TEMPERATURE CHANGE ACROSS THE APPLICATOR TUBE

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 3 2002
G.B. AWUAH
ABSTRACT Studies were conducted to evaluate the effect of system and product parameters on the temperature change (,T) across a 1.5 kW radio frequency heater operating at 27.12 MHz. Starch solutions (1 to 4% w/w) were used at three different flow rates (0.35, 0.5 and 1 L/min) and four power levels (672, 912, 1152 and 1392 W). The average heating rate of starch solutions varied from 6 to 19C/min depending on flow rate, concentration and power level. The corresponding residence time varied from 1.5 to 4.3 min. Central composite designs involving power (830 to 1234 W) and starch concentration (1 to 4% w/w) at 0.5 L/min were used to study the effects of salt, pH and sugar. As expected fluid flow rate, power level and salt concentration had significant impact (P ± 0.05) on temperature change (,T) across the applicator tube. Although the interaction effect of salt and concentration influenced ,T (P < 0.05), observed trends were not clear cut. Sugar and pH had no significant (P >0.05) influence on ,T due probably to their relatively lower conductivities. However, the interaction effect of sugar and starch concentration affected ,T. Correlations were developed for estimating ,T across the tube as a function of power level, concentration, pH, added salt and sugar. Finally, dimensionless correlations involving the generalized Reynolds, Prandtl, Grashof numbers, dimensionless power and loss-factor ratios were developed for estimating the temperature ratio (U) across the RF applicator. [source]


Simulated effects of herb competition on planted Quercus faginea seedlings in Mediterranean abandoned cropland

APPLIED VEGETATION SCIENCE, Issue 2 2003
Benayas Rey
Abstract. We tested simulated effects of herb competition on the performance of planted seedlings of Quercus faginea ssp. faginea in Mediterranean abandoned cropland. We produced three types of environment with respect to herb competition: absence of competition (AC), below-ground competition (BGC), and total competition (TC). We assessed the performance of Q. faginea seedlings in each treatment in five ways: (1) seedling mortality, (2) leaf length and total plant leaf area, (3) water potential, (4) total biomass and biomass allocation, and (5) non-structural carbohydrate storage in different plant organs. We also measured (6) soil moisture at different depths and (7) biomass production of herbs. The TC treatment reduced water availability more than the BGC treatment, in agreement with the most pronounced water stress in seedlings under TC conditions. BGC and TC treatments showed a high and similar seedling mortality, which was one order of magnitude higher than that in the AC treatment. Competition treatments affected glucose concentration in both shoots and roots, and followed the rank TC > BGC > AC. Q. faginea seedlings might compensate a lower water availability through glucose accumulation in leaves to reduce the osmotic potential. There was a maximum starch concentration in the BGC treatment that hints that a moderate resource limitation would limit tissue growth but not carbon assimilation. We conclude that the negative effects of herbs on Q. faginea seedlings are mostly a result of competition for water, and that this competition is noticeable since the earliest stages of the establishment. Complete weed removal is a technique that would strongly improve seedling survivorship. [source]


The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines

BIOTECHNOLOGY JOURNAL, Issue 11 2008
Stephanus J. Ferreira
Abstract Starch only occurs in small amounts in sugarcane, but is, nevertheless an unwanted product because it reduces the amount of sucrose that can be crystallized from molasses. In an attempt to reduce the starch content of sugarcane, the activities of ADP-glucose pyrophosphorylase (AGPase) and ,-amylase were manipulated using transgenic approaches. Transformation vectors to reduce AGPase activity and to increase plastidial ,-amylase activity were constructed and used for the transformation of sugarcane calli. The results of the manipulations were analyzed in suspension cultures. AGPase activity was reduced down to between 14 and 54% of the wild-type control. This led to a reduction in starch concentration down to 38% of the levels of the wild-type control. ,-Amylase activity was increased in the transgenic lines by 1.5,2 times that of the wild-type control. This increase in activity led to a reduction in starch amounts by 90% compared to wild-type control cells. In both experiments, the changes in starch concentrations could be correlated with the change in enzyme activity. There were no significant effects on sucrose concentrations in either experiment, indicating that these approaches might be useful to engineer regenerated sugarcane for optimized sucrose production. [source]


Effect of different starches on rheological and microstructural properties of (II) commercial processed cheese

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 12 2008
Darshan Trivedi
Summary A range of commercial processed cheese samples containing starch were prepared on a Rapid Visco Analyser (RVA) and on a pilot plant scale. This work clearly demonstrated that it was possible to manufacture processed cheese with part of the protein replaced with potato starch, while maintaining similar rheological attributes (firmness) to those of the control and an acceptable melt index. Sensory evaluation showed that, although the reduced-protein cheese samples had a good, clean, fresh flavour that was comparable with that of the control, at high starch concentrations the starch-containing processed cheese had a pasty texture and tended to stick to the wrapper. [source]


Fermentative production of L(+)-lactic acid from starch hydrolyzate and corn steep liquor as inexpensive nutrients by batch culture of Enterococcus faecalis RKY1

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2008
Young-Jung Wee
Abstract BACKGROUND: Attempts were made to determine the lactic acid production efficiency of novel isolate, Enterococcus faecalis RKY1 using four different starches (corn, tapioca, potato, and wheat starch) with different concentrations (50, 75, 100, and 125 g L,1) and corn steep liquor as an inexpensive nitrogen source. RESULTS: The yield of lactic acid from each starch was higher than 95% based on initial starch concentrations. High lactic acid concentration (129.9 g L,1) and yield (1.04 g-lactic acid g,1 -starch) were achieved faster (84 h) from 125 g L,1 of corn starch. Among the starches used, tapioca starch fermentation usually completed in a shorter incubation period. The final dry cell weight was highest (7.0 g L,1) for the medium containing 75 g L,1 of corn starch, which resulted in maximum volumetric productivity of lactic acid (3.6 g L,1 h,1). The addition of 30 g L,1 corn steep liquor supplemented with a minimal amount of yeast extract supported both cell growth and lactic acid fermentation. CONCLUSION:Enterococcus faecalis RKY1 was found to be capable of growing well on inexpensive nutrients and producing maximum lactic acid from starches and corn steep liquor as lower-cost raw materials than conventionally-used refined sugars such as glucose, and yeast extract as an organic nitrogen source in laboratory-scale studies. These fermentation characteristics are prerequisites for the industrial scale production of lactic acid. Copyright © 2008 Society of Chemical Industry [source]


Production and physicochemical characterization of resistant starch type III derived from pea starch

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 1 2003
Undine Lehmann
Abstract Smooth pea starch was used for the production of physiological important resistant starch type III. For reduction of the molecular weight of the starch, different strategies including enzymatic debranching and acid hydrolysis (lintnerization( were tested to obtain an optimal starting material for retrogradation. The resulting polymer chain lengths were analyzed by high-performance anion-exchange chromatography. Temperature regimes and starch concentrations in gel were optimized during the retrogradation with the aim to obtain a high yield of resistant starch. Optimal conditions led to resistant starch contents up to 74%. The products were thermostable and showed no loss of resistant structures after autoclaving. The peak temperatures of the thermal transition were at approximately 147°C. The resulting resistant starch products are suitable for the generation of functional foods. [source]


Effect of feed composition and feeding frequency on growth, feed utilization and nutrient retention in juvenile Atlantic cod, Gadus morhua L.

AQUACULTURE NUTRITION, Issue 6 2004
G. Rosenlund
Abstract Juvenile Atlantic cod (Gadus morhua) were fed extruded feeds formulated to contain 360,660 g kg,1 protein, 80,280 g kg,1 lipid and 80,180 g kg,1 starch at feeding frequencies of either once per day or every second day to satiation. The trial was conducted at 8 °C and lasted for 28 weeks during which fish were weighed five times at regular intervals. Sampling for proximate analysis was performed at the start, after 12 weeks and at the end of the trial. Fish grew from an average weight of 192 g to between 750 and 866 g, with growth being negatively affected by low dietary protein concentration. High dietary starch concentrations had some negative effects on growth, whereas changes in dietary fat concentration had no significant effect on growth. Liver indices (at the end of the experiment) varied between 80 and 170 g kg,1, and there was a negative correlation between the ratio of protein to fat and liver index. Feed conversion ratio (FCR) ranged between 0.74 and 0.88, and feed utilization improved with increasing concentrations of dietary protein and fat. Increasing dietary starch concentrations resulted in poorer feed utilization. To achieve good growth and protein retention, and avoid excessive liver size in juvenile cod, feeds should contain 500,600 g kg,1 crude protein, 130,200 g kg,1 lipid and <150 g kg,1 starch. [source]


The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines

BIOTECHNOLOGY JOURNAL, Issue 11 2008
Stephanus J. Ferreira
Abstract Starch only occurs in small amounts in sugarcane, but is, nevertheless an unwanted product because it reduces the amount of sucrose that can be crystallized from molasses. In an attempt to reduce the starch content of sugarcane, the activities of ADP-glucose pyrophosphorylase (AGPase) and ,-amylase were manipulated using transgenic approaches. Transformation vectors to reduce AGPase activity and to increase plastidial ,-amylase activity were constructed and used for the transformation of sugarcane calli. The results of the manipulations were analyzed in suspension cultures. AGPase activity was reduced down to between 14 and 54% of the wild-type control. This led to a reduction in starch concentration down to 38% of the levels of the wild-type control. ,-Amylase activity was increased in the transgenic lines by 1.5,2 times that of the wild-type control. This increase in activity led to a reduction in starch amounts by 90% compared to wild-type control cells. In both experiments, the changes in starch concentrations could be correlated with the change in enzyme activity. There were no significant effects on sucrose concentrations in either experiment, indicating that these approaches might be useful to engineer regenerated sugarcane for optimized sucrose production. [source]