Home About us Contact | |||
Star Formation Efficiency (star + formation_efficiency)
Selected AbstractsCan non-Gaussian cosmological models explain the WMAP high optical depth for reionization?MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2003Xuelei Chen ABSTRACT The first-year Wilkinson Microwave Anisotropy Probe data suggest a high optical depth for Thomson scattering of 0.17 ± 0.04, implying that the Universe was reionized at an earlier epoch than previously expected. Such early reionization is likely to be caused by ultraviolet (UV) photons from first stars, but it appears that the observed high optical depth can be reconciled within the standard structure formation model only if star formation in the early Universe was extremely efficient. With normal star formation efficiencies, cosmological models with non-Gaussian density fluctuations may circumvent this conflict as high density peaks collapse at an earlier epoch than in models with Gaussian fluctuations. We study cosmic reionization in non-Gaussian models and explore to what extent, within available constraints, non-Gaussianities affect the reionization history. For mild non-Gaussian fluctuations at redshifts of 30 to 50, the increase in optical depth remains at a level of a few per cent and appears unlikely to aid significantly in explaining the measured high optical depth. On the other hand, within available observational constraints, increasing the non-Gaussian nature of density fluctuations can easily reproduce the optical depth and may remain viable in underlying models of non-Gaussianity with a scale-dependence. [source] Formation and evolution of dwarf elliptical galaxies , II.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009Spatially resolved star formation histories ABSTRACT We present optical Very Large Telescope spectroscopy of 16 dwarf elliptical galaxies (dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using full-spectrum fitting, we derive radial profiles of the SSP-equivalent ages and metallicities. We make a detailed analysis with ulyss and steckmap of the star formation history in the core of the galaxies and in an aperture of one effective radius. We resolved the history into one to four epochs. The statistical significance of these reconstructions was carefully tested; the two programs give remarkably consistent results. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1,5 Gyr) populations and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dwarf spheroidal counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central single stellar population equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram pressure stripping or starvation, could drive the gas-rich, star-forming progenitors to the present dEs. [source] A shallow though extensive H2 2.122-,m imaging survey of Taurus,Auriga,Perseus , I. NGC 1333, L1455, L1448 and B1MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008C. J. Davis ABSTRACT We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus,Auriga,Perseus complex. These H2 2.122-,m observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope, and published submillimetre CO J= 3,2 maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig,Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of ,, 1.4) as well as red IRAC 3.6,4.5 ,m and IRAC/MIPS 4.5,24.0 ,m colours: 80 per cent have [3.6],[4.5] > 1.0 and [4.5],[24] > 1.5. These criteria , high , and red [4.5],[24] and [3.6],[4.5] colours , are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between , and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region. [source] The star formation efficiency and its relation to variations in the initial mass functionMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008Paul C. Clark ABSTRACT We investigate how the dynamical state of a turbulently supported, 1000 M,, molecular cloud affects the properties of the cluster it forms, focusing our discussion on the star formation efficiency (SFE) and the initial mass function (IMF). A variety of initial energy states are examined in this paper, ranging from clouds with |Egrav| = 0.1 Ekin to clouds with |Egrav| = 10 Ekin, and for both isothermal and piece-wise polytropic equations of state (similar to that suggested by Larson). It is found that arbitrary SFEs are possible, with strongly unbound clouds yielding very low SFEs. We suggest that the low SFE in the Maddelena cloud may be a consequence of the relatively unbound state of its internal structure. It is also found that competitive accretion results in the observed IMF when the clouds have initial energy states of |Egrav| ,Ekin. We show that under such conditions the shape of the IMF is independent of time in the calculations. This demonstrates that the global accretion process can be terminated at any stage in the cluster's evolution, while still yielding a distribution of stellar masses that is consistent with the observed IMF. As the clouds become progressively more unbound, competitive accretion is less important and the protostellar mass function flattens. These results predict that molecular clouds should be permeated with a distributed population of stars that follow a flatter than Salpeter IMF. [source] Reionization bias in high-redshift quasar near-zonesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008J. Stuart B. Wyithe ABSTRACT Absorption spectra of high-redshift quasars exhibit an increasingly thick Ly, forest, suggesting that the fraction of neutral hydrogen in the intergalactic medium (IGM) is increasing towards z, 6. However, the interpretation of these spectra is complicated by the fact that the Ly, optical depth is already large for neutral hydrogen fractions in excess of 10,4, and also because quasars are expected to reside in dense regions of the IGM. We present a model for the evolution of the ionization state of the IGM which is applicable to the dense, biased regions around high-redshift quasars as well as more typical regions in the IGM. We employ a cold dark matter based model in which the ionizing photons for reionization are produced by star formation in dark matter haloes spanning a wide range of masses, combined with numerical radiative transfer simulations which model the resulting opacity distribution in quasar absorption spectra. With an appropriate choice for the parameter which controls the star formation efficiency, our model is able to simultaneously reproduce the observed Ly, forest opacity at 4 < z < 6, the ionizing photon mean-free-path at z, 4 and the rapid evolution of highly ionized near-zone sizes around high-redshift quasars at 5.8 < z < 6.4. In our model, reionization extends over a wide redshift range, starting at z, 10 and completing as H ii regions overlap at z, 6,7. We find that within 5 physical Mpc of a high-redshift quasar, the evolution of the ionization state of the IGM precedes that in more typical regions by around 0.3 redshift units. More importantly, when combined with the rapid increase in the ionizing photon mean-free-path expected shortly after overlap, this offset results in an ionizing background near the quasar which exceeds the value in the rest of the IGM by a factor of ,2,3. We further find that in the post-overlap phase of reionization the size of the observed quasar near-zones is not directly sensitive to the neutral hydrogen fraction of the IGM. Instead, these sizes probe the level of the background ionization rate and the temperature of the surrounding IGM. The observed rapid evolution of the quasar near-zone sizes at 5.8 < z < 6.4 can thus be explained by the rapid evolution of the ionizing background, which in our model is caused by the completion of overlap at the end of reionization by 6 ,z, 7. [source] A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolutionMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007H. Baumgardt ABSTRACT We have carried out a large set of N -body simulations studying the effect of residual-gas expulsion on the survival rate, and final properties of star clusters. We have varied the star formation efficiency (SFE), gas expulsion time-scale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. The complete data of these simulations are made available on the internet. Our simulations show that cluster sizes, bound mass fraction and velocity profile are strongly influenced by the details of the gas expulsion. Although star clusters can survive SFEs as low as 10 per cent if the tidal field is weak and the gas is removed only slowly, our simulations indicate that most star clusters are destroyed or suffer dramatic loss of stars during the gas removal phase. Surviving clusters have typically expanded by a factor of 3 or 4 due to gas removal, implying that star clusters formed more concentrated than as we see them today. Maximum expansion factors seen in our runs are around 10. If gas is removed on time-scales smaller than the initial crossing time, star clusters acquire strongly radially anisotropic velocity dispersions outside their half-mass radii. Observed velocity profiles of star clusters can therefore be used as a constraint on the physics of cluster formation. [source] The nature of high-redshift galaxiesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2001Rachel S. Somerville Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift ) Lyman-break galaxies (LBGs). We consider a ,collisional starburst' model in which bursts of star formation are triggered by galaxy,galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at and with a reasonable amount of dust extinction. Model galaxies at have star formation rates, half-light radii, colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two ,quiescent' models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints. [source] A study of major mergers using a multi-phase ISM codeASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009J. Weniger Abstract Galaxy interactions are a common phenomenon in clusters of galaxies. Especially major mergers are of particular importance, because they can change the morphological type of galaxies. They have an impact on the mass function of galaxies and they trigger star formation , the main driver of the Galactic Matter Cycle. Therefore, we conducted a study of major mergers by means of a multi-phase ISM code. This code is based on a TREE-SPH-code combined with a sticky particle method allowing for star formation controlled by the properties of a multi-phase ISM. This is in contrast to the usually implemented Schmidt law depending mainly on the gas density. Previously, this code was used on isolated galaxies. Since our star formation recipe is not restricted to a special type of galaxy, it is interesting to apply it to interacting galaxies, too. Our study on major mergers includes a research of global properties of the interacting system, namely the star formation rate and the star formation efficiency, the evaporation and condensation rates, as well as the mass exchange of distinct components, namely stars, diffuse ISM, and clouds. Investigating these properties provides insight to interrelations between various physical processes. The results indicate that the star formation efficiency as well as the evaporation and condensation rates are influenced by the interaction (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |