Home About us Contact | |||
Standardized Uptake Value (standardized + uptake_value)
Selected AbstractsCombined Use of F-18 Fluorocholine Positron Emission Tomography and Magnetic Resonance Spectroscopy for Brain Tumor EvaluationJOURNAL OF NEUROIMAGING, Issue 3 2004Sandi A. Kwee MD ABSTRACT Background. Choline metabolism is often abnormal in malignant brain tumors.Methods. Brain positron emission tomography (PET) imaging with F-18 fluorocholine (FCH) was performed on 2 patients with intracranial lesions suspected to be high-grade malignant gliomas on the basis of magnetic resonance (MR) imaging and multivoxel 1H-MR spectroscopic imaging (MRSI) findings. Standardized uptake value (SUV) measurements on PET were compared with measurements of choline/creatine metabolite ratio on MRSI in corresponding regions. Brain biopsy revealed glioblastoma multiforme (GBM) in one case and demyelinating disease in the other.Results. In the case of GBM, the tumor demonstrated increased FCH uptake on PET. The mean and maximum SUV in areas of the tumor correlated with regional choline/ creatine ratio measurements (r= 0.76,P < .001;r= 0.83,P < .001, respectively). In the case of tumefactive demyelinating lesions, the lesion demonstrated low FCH uptake, which did not correlate with choline/ creatine ratio measurements.Conclusions. Assessments of choline metabolism may aid in evaluating intracranial mass lesions. [source] Substantial Thalamostriatal Dopaminergic Defect in Unverricht-Lundborg DiseaseEPILEPSIA, Issue 9 2007Miikka Korja Summary:,Purpose: Unverricht-Lundborg disease (ULD) is currently classified as progressive myoclonus epilepsy. Myoclonus, the characteristic symptom in ULD, suggests that dopamine neurotransmission may be involved in the pathophysiology of ULD. Our purpose was to examine brain dopaminergic function in ULD patients. Methods: Four genetically and clinically diagnosed ULD patients and eight healthy controls were scanned with [11C]raclopride-PET. PET images were coregistered to individual 1.5T MR images and region-of-interest analysis was performed for the striatum and thalamus. Standardized uptake values and individual voxel-wise binding potential maps of the patients and controls were also analyzed. Results: ULD patients had markedly higher (31,54%) dopamine D2-like receptor availabilities than healthy controls in both the striatum and the thalamus. The proportionally highest binding potentials were detected in the thalamus. There were no significant differences in the cerebellar uptake of [11C]raclopride in ULD patients versus healthy controls. Voxel-based results were in accordance with the region-of-interest analysis. Conclusions: These results suggest that dopaminergic modulation at the level of the striatum and thalamus could be a crucial factor contributing to the symptoms of ULD. In the light of our data, we propose that ULD with dopamine dysfunction and dyskinetic symptoms shares certain pathophysiological mechanisms with classical movement disorders. Future studies are therefore warranted to study the effect of dopaminergic pharmacotherapy in ULD. [source] Early 18F-2-fluoro-2-deoxy-d-glucose positron emission tomography may identify a subset of patients with estrogen receptor-positive breast cancer who will not respond optimally to preoperative chemotherapyCANCER, Issue 4 2010Andrea A. Martoni MD Abstract BACKGROUND: A pathologic complete response (pCR) and minimal residual disease (pMRD) after preoperative chemotherapy (PCT) for early stage or locally advanced breast cancer (BC) correlates with a good prognosis. METHODS: Patients who received from 6 to 8 cycles of PCT for BC were monitored by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG-PET), and the maximal standardized uptake value (SUVmax) was calculated at baseline, after 2 cycles, after 4 cycles, and at the end of PCT. SUVmax percentage changes (,-SUV) were compared with the pathologic response rate. Patients who had a pCR or pMRD in the tumor and an absence of cancer cells in ipsilateral axillary lymph nodes were defined as having obtained an optimal pathologic response (pR), whereas all the other conditions were classified as a pathologic nonresponse (pNR). RESULTS: Of 34 patients, 7 (21%) achieved a pR (3 patients had a pCR, and 4 patients had pMRD). After the second cycle, the ,-SUV threshold with optimal negative predictive value to predict a pR was 50%. Twenty-six patients (76%) had a ,-SUV >50%, including all 7 patients who had a pR and 19 patients who had a pNR. Conversely, all 8 patients who had a ,-SUV ,50% had a pNR. All 8 of those patients had estrogen recepetor-positive tumors. CONCLUSIONS: Early evaluation of metabolic response by 18F-FDG-PET during PCT was able to identify 30% of patients, all with estrogen receptor-positive tumors, who would not obtain pR after completion of chemotherapy program. Cancer 2010. © 2010 American Cancer Society. [source] Correlation of angiogenesis with 18F-FMT and 18F-FDG uptake in non-small cell lung cancerCANCER SCIENCE, Issue 4 2009Kyoichi Kaira L-[3- 18F]-,-methyltyrosine (18F-FMT) is an amino-acid tracer for positron-emission tomography (PET). We have conducted a clinicopathologic study to elucidate the correlation of angiogenesis with 18F-FMT and 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) uptake in patients with non-small cell lung cancer (NSCLC). Thirty-seven NSCLC patients were enrolled in this study, and two PET studies with 18F-FMT and 18F-FDG were performed. Uptake of PET tracers was evaluated with standardized uptake value. Vascular endothelial growth factor (VEGF), CD31, CD34, L-type amino acid transporter 1 (LAT1) and Ki-67 labeling index of the resected tumors were analyzed by immunohistochemical staining, and correlated with the clinicopathologic variables and the uptake of PET tracers. The median VEGF rate was 45% (range, 10,78%). High expression was seen in 30 patients (81%, 30/37). VEGF expression was statistically associated with progressively growing microvessel count. VEGF showed a correlation with LAT1 expression (P = 0.04) and Ki-67 labeling index (P = 0.01). However, it showed no correlation with age, gender, disease stage, tumor size, and histology. Microvessel density (MVD) showed no correlation with any parameters. 18F-FMT and 18F-FDG uptake correlated significantly with VEGF (P < 0.0001, P = 0.026, respectively), whereas the correlation of 18F-FMT and VEGF was more meaningful. The present study demonstrated that the metabolic activity of primary tumors as evaluated by PET study with 18F-FMT and 18F-FDG is related to tumor angiogenesis and the proliferative activity in NSCLC. (Cancer Sci 2009; 100: 753,758) [source] Early detection of bone infection and differentiation from post-surgical inflammation using 2-deoxy-2-[18F]-fluoro- D -glucose positron emission tomography (FDG-PET) in an animal modelJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2005Laurie Jones-Jackson Abstract Diagnosing bone infection in the context of post-surgical inflammation is problematic since many of the early signs of infection are similar to normal post-surgical changes. We used a rabbit osteomyelitis model to evaluate the use of 2-deoxy-2-[18F]-fluoro- D -glucose positron emission tomography (FDG-PET) as a means of detecting post-operative infection in the context of post-surgical inflammation. Comparisons were made between infected and non-infected rabbits in which infection with Staphylococcus aureus was initiated at the time of surgery. Weekly PET scans were obtained 30 and 60 min after the introduction of FDG and analyzed based on standardized uptake values (SUV) at the surgical site and visual assessment of the presence or absence of infection. Concurrent X-rays were taken immediately prior to scanning. At 4 weeks post-operatively, animals were sacrificed for histologic and bacteriologic confirmation of infection. Uptake of FDG was evident in the bone of all rabbits on day 1 post-surgery, however, SUV comparisons from the surgical site could not be used to distinguish between the infected and uninfected groups until day 15. Visual analysis of FDG-PET scans revealed a significant difference (p < 0.01) between the infected and uninfected groups as early as day 8. This was due in part to the ability to visualize regional lymph nodes by FDG-PET.© 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinomaCANCER, Issue 9 2002Christian Kollmannsberger M.D. Abstract BACKGROUND To assess the ability of [18F]fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET) to predict the viability of residual masses after chemotherapy in patients with metastatic nonseminomatous germ cell tumors (GCT), PET results were compared in a blinded analysis with computed tomography (CT) scans and serum tumor marker changes (TUM) as established methods of assessment. METHODS Independent reviewers who were blinded to each other's results evaluated the PET results and corresponding CT scan and TUM results in 85 residual lesions from 45 patients. All patients were treated within prospective clinical trials and received primary/salvage, high-dose chemotherapy with autologous blood stem cell support for primary poor prognosis disease or recurrent disease. PET results were assessed both visually and by quantifying glucose uptake (standardized uptake values). Results were validated either by histologic examination of a resected mass and/or biopsy (n = 28 lesions) or by a 6-month clinical follow-up after evaluation (n = 57 lesions). RESULTS F-18 FDG PET showed increased tracer uptake in 32 of 85 residual lesions, with 29 true positive (TP) lesions and three false positive (FP) lesions. Fifty-three lesions were classified by PET as negative (no viable GCT), 33 lesions were classified by PET as true negative (TN), and 20 lesions were classified by PET as false negative (FN). In the blinded reading of the corresponding CT scan and TUM results, 38 residual lesions were assessed correctly as containing viable carcinoma and/or teratoma. Forty-six lesions were classified as nonsuspicious by CT scan/TUM (33 TN lesions and 14 falsely classified lesions). PET correctly predicted the presence of viable carcinoma in 5 of these 14 and the absence of viable carcinoma in 3 of these 14 lesions. Resulting sensitivities and specificities for the prediction of residual mass viability were as follows: PET, 59% sensitivity and 92% specificity; radiologic monitoring, 55% sensitivity and 86% specificity; and TUM, 42% sensitivity and 100% specificity. The positive and negative predictive values for PET were 91% and 62%, respectively. The diagnostic efficacy of PET did not improve when patients with teratomatous elements in the primary tumor were excluded from the analysis. In patients with multiple residual masses, a uniformly increased residual F-18 FDG uptake in all lesions was a strong predictor for the presence of viable carcinoma. CONCLUSIONS F-18 FDG PET imaging performed in conjunction with conventional staging methods offers additional information for the prediction of residual mass histology in patients with nonseminomatous GCT. A positive PET is highly predictive for the presence of viable carcinoma. Other useful indications for a PET examination include patients with multiple residual masses and patients with marker negative disease. Cancer 2002;94:2353,62. © 2002 American Cancer Society. DOI 10.1002/cncr.10494 [source] |