Home About us Contact | |||
Stand Condition (stand + condition)
Selected AbstractsDoes stand structure influence susceptibility of eucalypt floodplain forests to dieback?AUSTRAL ECOLOGY, Issue 3 2010SHAUN C. CUNNINGHAM Abstract Forest dieback is a worldwide problem that is likely to increase with climate change and increasing human demands for resources. Eucalyptus camaldulensis forests are an acute example of forest dieback, with 70% of the Victorian Murray River floodplain in some state of dieback. If we are to halt dieback in these floodplain forests, we need to understand what makes stands susceptible to dieback. Forest diebacks are often related to stand structure, with dieback more severe in senescent or high-density stands. We determined whether certain stand structures make these forests more susceptible to dieback. We undertook an extensive survey of 176 stands across 100 000 ha of forest, covering the range of stand condition on this floodplain. Large and small trees (20-, 40-, 80- and 120-cm diameter) showed a similar reduction in the probability of being alive with decreasing stand condition. A slight improvement in stand condition was found at higher densities and basal areas, which may reflect the higher productivity or younger age of these stands. Stand condition was moderately, positively correlated with longitude, with stand condition being higher in the east of the Murray River floodplain where flooding frequencies are currently higher. This suggests that dieback of these floodplain forests would be more effectively mitigated by increased water availability through flooding than by altering stand structure. [source] Aspen succession and nitrogen loading: a case for epiphytic lichens as bioindicators in the Rocky Mountains, USAJOURNAL OF VEGETATION SCIENCE, Issue 3 2009Paul C. Rogers Abstract Question: Can lichen communities be used to assess short- and long-term factors affecting seral quaking aspen (Populus tremuloides) communities at the landscape scale? Location: Bear River Range, within the Rocky Mountains, in northern Utah and southern Idaho, USA. Method: Forty-seven randomly selected mid-elevation aspen stands were sampled for lichens and stand conditions. Plots were characterized according to tree species cover, basal area, stand age, bole scarring, tree damage, and presence of lichen species. We also recorded ammonia emissions with passive sensors at 25 urban and agricultural sites throughout an adjacent populated valley upwind of the forest stands. Nonmetric multidimensional scaling (NMS) ordination was used to evaluate an array of 20 variables suspected to influence lichen communities. Results: In NMS, forest succession explained most variance in lichen composition and abundance, although atmospheric nitrogen from local agricultural and urban sources also significantly influenced the lichen communities. Abundance of nitrophilous lichen species decreased with distance from peak ammonia sources and the urban center in all aspen succession classes. One lichen, Phaeophyscia nigricans, was found to be an effective bioindicator of nitrogen loading. Conclusions: Lichen communities in this landscape assessment of aspen forests showed clear responses to long-term (stand succession) and short-term (nitrogen deposition) influences. At the same time, several environmental factors (e.g. tree damage and scarring, distance to valley, topography, and stand age) had little influence on these same lichen communities. We recommend further use of epiphytic lichens as bioindicators of dynamic forest conditions. [source] Evidence that Branch Cuvettes are Reasonable Surrogates for Estimating O3 Effects in Entire Tree CrownsPLANT BIOLOGY, Issue 2 2007C. Then& Abstract: Within the scope of quantifying ozone (O3) effects on forest tree crowns it is still an open question whether cuvette branches of adult trees are reasonable surrogates for O3 responses of entire tree crowns and whether twigs exhibit autonomy in defense metabolism in addition to carbon autonomy. Therefore, cuvette-enclosed branches of mature beech (Fagus sylvatica) trees were compared with branches exposed to the same and different ozone regimes by a free-air fumigation system under natural stand conditions by means of a vice versa experiment. For this purpose, cuvettes receiving 1 × O3 air were mounted in trees exposed to 2 × O3 and cuvettes receiving 2 × O3 air were mounted in trees exposed to 1 × O3 in the upper sun crown. At the end of the fumigation period in September 2004, leaves were examined for differences in gas exchange parameters, pigments, antioxidants, carbohydrates, and stable isotope ratios. No significant differences in foliar gas exchange, total carbohydrates, stable isotope ratios, pigment, and antioxidant contents were found as a consequence of cuvette enclosure (cuvette versus free-air branches) of the same O3 concentrations besides increase of glucose inside the cuvettes and reduction of the de-epoxidation state of the xanthophyll cycle pigments. No significant ozone effect was found for the investigated gas exchange and most biochemical parameters. The total and oxidized glutathione level of the leaves was increased by the 2 × O3 treatment in the cuvette and the free-air branches, but this effect was significant only for the free-air branches. From these results we conclude that cuvette branches are useful surrogates for examining the response of entire tree crowns to elevated O3 and that the defence metabolism of twigs seems to be at least partially autonomous. [source] |