Stable Operation (stable + operation)

Distribution by Scientific Domains


Selected Abstracts


Microfluidic device for capillary electrochromatography-mass spectrometry

ELECTROPHORESIS, Issue 21 2003
Iulia M. Lazar
Abstract A novel microfabricated device that integrates a monolithic polymeric separation channel, an injector, and an interface for electrospray ionization-mass spectrometry detection (ESI-MS) was devised. Microfluidic propulsion was accomplished using electrically driven fluid flows. The methacrylate-based monolithic separation medium was prepared by photopolymerization and had a positively derivatized surface to ensure electroosmotic flow (EOF) generation for separation of analytes in a capillary electrochromatography (CEC) format. The injector operation was optimized to perform under conditions of nonuniform EOF within the microfluidic channels. The ESI interface allowed hours of stable operation at the flow rates generated by the monolithic column. The dimensions of one processing line were sufficiently small to enable the integration of 4,8 channel multiplexed structures on a single substrate. Standard protein digests were utilized to evaluate the performance of this microfluidic chip. Low- or sub-fmol amounts were injected and detected with this arrangement. [source]


Unit commitment at frequency security condition

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 2 2001
X. Lei
In island grids and weakly interconnected power systems, the loss of a large proportion of generation will cause the system frequency to fall dramatically. In order to ensure a stable operation with the lowest impact to the system, the disturbed power balance must be equalized within a short specified time by activating the second-reserve of on-line units or by load shedding or both. Unit commitment procedures shall consider these factors to ensure a reliable power supply while minimizing the fuel costs. This paper presents a unit commitment procedure taking the frequency security condition of systems into account. The procedure commits and optimizes units, calculates necessary second-reserve capability, and allocates them among the available on-line units. Parallel to the minimization of daily fuel costs, a specified frequency minimum following the loss of generation is employed as a criterion for maintaining system security. A case study on typical island systems with a large number of different units is demonstrated using the proposed procedure. Results from the study validated robust performance of the proposed procedure that minimizes fuel costs while maintaining frequency security condition. This paper considers only the frequency security condition to be handled. However, it can also be extended with other criteria such transmission capability during transient conditions of interconnected systems. [source]


Portable Size DMFC-Stack

FUEL CELLS, Issue 3 2004
A. Oedegaard
Abstract A small, low temperature, direct methanol fuel cell stack for portable applications has been developed. Several flow field designs were investigated with respect to stable operation and high performance. Due to carbon dioxide and water production on the anode and cathode, respectively, methanol and oxygen access to the electrodes is hindered. During single cell operation the effect of both carbon dioxide evolution and water production on the current output was observed. The difference between parallel and serial feeding of both fuel and oxidant to the DMFC stack was also investigated. It was found that it is very important to remove reaction products from the active cell surface in order to ensure stable stack operation at low temperatures. The maximal power realised with the 12-cell direct methanol fuel cell stack was 30 W. [source]


gAn improved interface for universal acoustic flame detection in modified supercritical fluid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2008
Christine Mah
Abstract A novel method of interfacing the acoustic flame detector (AFD) with modified supercritical fluid chromatography (SFC) is presented. By applying resistive heating directly to the burner region between the restrictor outlet and the acoustic flame, infrequent severe noise, baseline drifting, and peak deformations that can occasionally be observed with the AFD are eliminated. For example, by increasing the interface temperature only a few hundred degrees Celsius, such sporadic noise in the detector can be reduced nearly ten-fold resulting in smooth stable operation of the AFD. Further, for various levels of methanol modified supercritical carbon dioxide mobile phase examined, the interface was observed to reduce detector noise in each to a common minimal range near 10,25 Hz when an appropriate temperature was achieved. The method is simply assembled, inexpensive to construct, and robust in its daily operation. Overall, the heated interface developed and presented facilitates reliable AFD operation in modified SFC, and supports further exploration and implementation of this sensor as an alternative universal detector in separations requiring an organic cosolvent in the mobile phase. [source]


Multiwavelength source based on SOA and EDFA in a ring-cavity resonator

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 1 2009
S. Shahi
Abstract A multiwavelength source incorporating a semiconductor optical amplifier (SOA) and a erbium-doped fiber amplifier (EDFA) in a ring-cavity configuration was demonstrated. The multiwavelength source was able to generate more than 13 channels at ,27 dBm and above at a SOA bias current of 300 mA and 980-nm pump power of 92 mW. The number of wavelengths generated can be controlled by adjusting the birefringence of the ring cavity using the polarization controllers. The proposed laser has constant channel spacing of 0.8 nm, which is suitable for communication and sensing applications, and shows stable operation at room temperature. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 110,113, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23970 [source]


Highly reliable blue-violet inner stripe laser diodes using planar regrowth of AlGaN/GaN superlattice cladding layer

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2007
K. Fukuda
Abstract We describe highly reliable operation of a novel planar inner stripe blue-violet laser diode (BV-LD). A planar regrowth technique makes it possible to simultaneously fabricate a low-resistive superlattice (SL) structure both on the current-injecting narrow stripe area and on the AlN current-blocking layer. This allows for low operating voltage and over 1000 h stable operation at a single-mode output power of 200 mW at 80 °C. The results obtained here clearly indicate that this inner stripe laser structure is a desirable candidate for a reliable high-power light source for the next generation of optical disc systems. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Strain-engineered novel III,N electronic devices with high quality dielectric/semiconductor interfaces

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2003
M. Asif Khan
Abstract Since the early demonstration of 2D-electron gas [M. A. Khan et al., Appl. Phys. Lett. 60, 3027 (1992)] and a heterojunction field effect transistor (HFET) [M. Asif Khan et al., Appl. Phys. Lett. 63, 1214 (1993)] in III,N materials, rapid progress has been made to improve the DC and RF performance of GaN,AlGaN based HFETs. Stable and impressive microwave powers as high as 4,8 W/mm have been reported for device operation frequencies from 10 to 35 GHz. The key reason for these high performance numbers is an extremely large sheet carrier densities (>1 × 1013 cm,2) that can be induced at the interfaces in III,N hetereojunction [A. Bykhovsk et al., J. Appl. Phys. 74, 6734 (1993); M. Asif Khan et al., Appl. Phys. Lett. 75, 2806 (1999)]. These are instrumental in screening the channel dislocations thereby retaining large room temperature carrier mobilities (>1500 cm2/Vs) and sheet resistance as low as 300 ,/sq. These numbers and the high breakdown voltages of the large bandgap III,N material system thus enable rf-power approximately 5,10 times of that possible with GaAs and other competitor's technologies. We have recently introduced a unique pulsed atomic layer epitaxy approach to deposit AlN buffer layers and AlN/AlGaN superlattices [J. Zhang et al., Appl. Phys. Lett. 79, 925 (2001); J. P. Zhang et al., Appl. Phys. Lett. 80, 3542 (2002)] to manage strain and decrease the dislocation densities in high Al-content III,N layers. This has enabled us to significantly improve GaN/AlGaN hetereojunctions and the device isolation. The resulting low defect layers are not only key to improving the electronic but also deep ultraviolet light-emitting diode devices. For deep UV LED's they enabled us to obtain peak optical powers as high as 10 mW and 3 mW for wavelengths as short as 320 nm and 278 nm. Building on our past work [M. Asif Khan et al., Appl. Phys. Lett. 77, 1339 (2000); X. Hu et al., Appl. Phys. Lett. 79, 2832 (2001)] we have now deposited high quality SiO2/Si3N4 films over AlGaN with low interface state densities. They have then been used to demonstrate III,N insulating gate transistors (MOSHFET (SiO2) and MISHFET (Si3N4) with gate leakage currents 4,6 order less than those for conventional GaN,AlGaN HFETs. The introduction of the thin insulator layers (less then 100 Å) under the gate increases the threshold voltage by 2,3 V. In addition, it reduces the peak transconductance gm. However the unity cut-off frequency, the gain and the rf-powers remain unaffected as the gm/Cgs (gate-source capacitance) ratio remains unchanged. In addition to managing the defects and gate leakage currents we have also employed InGaN channel double heterojunction structures (AlInGaN,InGaN,GaN) to confine the carriers thereby reducing the spillover into trappings states. These InGaN based MOS-DHFETs exhibited no current-collapse, extremely low gate leakage currents (<10,10 A/mm) and 10,26 GHz rf-powers in excess of 6 W/mm. We have also demonstrated the scalability and stable operation of our new and innovative InGaN based insulating gate heterojunction field effect transistor approach. In this paper we will review the III,N heterojunction field-effect transistors progress and pioneering innovations including the excellent work from several research groups around the world. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2003
I. Hussy
Abstract For the transition to the hydrogen economy, hydrogen must be produced sustainably, e.g., by the fermentation of agricultural material. Continuous fermentative production of hydrogen from an insoluble substrate in nonsterile conditions is yet to be reported. In this study hydrogen production using mixed microflora from heat-treated digested sewage sludge in nonsterile conditions from a particulate co-product of the wheat flour industry (7.5 g L,1 total hexose) at 18- and 12-hour hydraulic retention times, pH 4.5 and 5.2, 30°C and 35°C was examined. In continuous operation, hydrogen yields of approximately 1.3 moles hydrogen/mole hexose consumed were obtained, but decreased if acetate or propionate levels rose, indicating metabolism shifted towards hydrogen consumption by homoacetogenesis or propionate producers. These shifts occurred both at pH 4.5 and 5.2. Sparging the reactor with nitrogen to reduce hydrogen in the off-gas from 50% to 7% gave stable operation with a hydrogen yield of 1.9 moles hydrogen /mole hexose consumed over an 18-day period. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng84: 619,626, 2003. [source]


In this issue: Biotechnology Journal 8/2010

BIOTECHNOLOGY JOURNAL, Issue 8 2010
Article first published online: 12 AUG 2010
Biocatalyst microemulsions Pavlidis et al., Biotechnol. J. 2010, 5, 805,812 Enzymes maintain their catalytic activity when hosted in aqueous nanodroplets like reverse micelles. Researchers from Ioannina, Greece, propose the use of water-in-ionic liquid microemulsionbased organogels (w/IL MBGs) as novel supports for the immobilization of lipase B from Candida antarctica and lipase from Chromobacterium viscosum. These novel lipase-containing w/IL MBGs can be effectively used as solid phase biocatalysts in various polar and non-polar organic solvents or ILs, exhibiting up to 4.4-fold higher esterification activity compared to water-in-oil microemulsion-based organogels. The immobilized lipases retain their activity for several hours at 70°C, while their half life time is up to 25-fold higher compared to that observed in w/IL microemulsions Biocatalyst cryogelation Bieler et al., Biotechnol. J. 2010, 5, 881,885 Entrapment of biocatalysts in hydrogel beads allows stable operation in otherwise deteriorating solvents. Doing this by cryogelation is a gentle method to extend the scope of biocatalysis. To foster the use of this versatile method, researchers from Aachen, Germany, devised an automated injector for the production of PVA/PEG-enzyme immobilisates. The device consists of a thermostated reservoir connected to a programmable injector nozzle and an agitated receiving bath for the droplets. This lab-scale production unit yields up to 1500 beads with immobilized enzyme per minute with a narrow size distribution and good roundness. Biocatalyst membrane reactor Lyagin et al., Biotechnol. J. 2010, 5, 813,821 Screening of biocatalysts, substrates or conditions in the early stages of bioprocess development requires an enormous number of experiments and is a tedious, expensive and time-consuming task. Currently available screening systems can only be operated in batch or fed-batch mode, which can lead to severe misinterpretations of screening results. Researchers from Berlin, Germany, now developed a novel screening system that enables continuous feeding of substrates and continuous removal of products. A prototype based on the membrane reactor concept was designed and operated for a model reaction, the hydrolysis of cellulose. [source]


Operational concept for the improved synthesis of (R)-3,3'-furoin and related hydrophobic compounds with benzaldehyde lyase

BIOTECHNOLOGY JOURNAL, Issue 5 2006
Marion B. Ansorge-Schumacher Dr.
Abstract Biphasic reaction systems for enzyme catalysis are an elegant way to overcome limited solubility and stability of reactants and facilitate continuous processes. However, many synthetically useful enzymes are not stable in biphasic systems of water and organic solvent. The entrapment in polymer beads of polyvinyl alcohol has been shown to enable the stable operation of enzymes unstable in conventional biphasic reaction systems. We report the extension of this concept to continuous operation in a fluidised bed reactor. The enzyme benzaldehyde lyase was used for the continuous synthesis of enantiopure (R)-3,3'-furoin. The results show enhanced stability with half-life times under operation conditions of more than 100 h, as well as superior enzyme utilisation in terms of productivity. Furthermore, racemisation and oxidation of the product could be successfully prevented under the non-aqueous and inert reaction conditions. [source]


Studies on Regime Transition, Operating Range and System Stability in a Liquid-Solid Circulating Fluidized Bed

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 4 2009
P. Natarajan
Abstract In the present work, the variations in the solids circulation rate and solids holdup were analyzed to study the behavior of a liquid-solid circulating fluidized-bed (LSCFB) regime. The results confirm the existence of two regions in the regime of LSCFB. A new concept of critical liquid velocity, jlc, is proposed in the present work for demarcation between region,1 and region,2, which is found to be a constant value of about 1.3,ut for all particles considered. The operating range of the LSCFB regime is obtained for the various particles and a correlation is developed from the data to estimate the maximum total liquid velocity. The predicted maximum liquid velocity was compared with the experimental values and found to be in good agreement within ±9,%. The effects of total liquid velocity, particle size and density on the stable operating range are discussed. Analysis of the experimental results shows that stable operation prevails both in region,1 and region,2. [source]