Home About us Contact | |||
Stable Isotope Data (stable + isotope_data)
Selected AbstractsPelagic and benthic net production of dissolved inorganic carbon in an unproductive subarctic lakeFRESHWATER BIOLOGY, Issue 3 2007JAN ÅBERG Summary 1. Both the pelagic and benthic net dissolved inorganic carbon (DIC) productions were measured in situ on four occasions from June to September 2004, in the unproductive Lake Diktar-Erik in subarctic Sweden. The stable isotopic signal (,13C) of respired organic material was estimated from hypolimnion water data and data from a laboratory incubation using epilimnion water. 2. Both pelagic and benthic habitats were net heterotrophic during the study period, with a total net DIC production of 416 mg C m,2 day,1, of which the pelagic habitat contributed approximately 85%. The net DIC production decreased with depth both in the pelagic water and in the sediments, and most of the net DIC production occurred in the upper water column. 3. Temporal variations in both pelagic and benthic DIC production were small, although we observed a significant decrease in pelagic net DIC production after the autumn turnover. Water temperature was the single most important factor explaining temporal and vertical variations in pelagic DIC production. No single factor explained more than 10% of the benthic net DIC production, which probably was regulated by several interacting factors. 4. Pelagic DIC production, and thus most of the whole-lake net production of DIC, was mainly due to the respiration of allochthonous organic carbon. Stable isotope data inferred that nearly 100% of accumulated DIC in the hypolimnion water had an allochthonous carbon source. Similarly, in the laboratory incubation using epilimnion water, c. 85% of accumulated DIC was indicated to have an allochthonous organic carbon source. [source] Age of Irrigation Water in Ground Water from the Eastern Snake River Plain Aquifer, South-Central IdahoGROUND WATER, Issue 2 2000L.N. Plummer Stable isotope data (2H and 18O) were used in conjunction with chlorofluorocarbon (CFC) and tritium/helium-3 (3H/3He) data to determine the fraction and age of irrigation water in ground water mixtures from farmed parts of the Eastern Snake River Plain (ESRP) Aquifer in south-central Idaho. Two groups of waters were recognized: (1) regional background water, unaffected by irrigation and fertilizer application, and (2) mixtures of irrigation water from the Snake River with regional background water. New data are presented comparing CFC and 3H/3He dating of water recharged through deep fractured basalt, and dating of young fractions in ground water mixtures. The 3H/3He ages of irrigation water in most mixtures ranged from about zero to eight years. The CFC ages of irrigation water in mixtures ranged from values near those based on 3H/3He dating to values biased older than the 3H/3He ages by as much as eight to 10 years. Unsaturated zone air had CFC-12 and CFC-113 concentrations that were 60% to 95%, and 50% to 90%, respectively, of modern air concentrations and were consistently contaminated with CFC-11. Irrigation water diverted from the Snake River was contaminated with CFC-11 but near solubility equilibrium with CFC-12 and CFC-113. The dating indicates ground water velocities of 5 to 8 m/d for water along the top of the ESRP Aquifer near the southwestern boundary of the Idaho National Engineering and Environmental Laboratory (INEEL). Many of the regional background waters contain excess terrigenic helium with a 3He/4He isotope ratio of 7 × 10,6 to 11 × 10,6 (R/Ra= 5 to 8) and could not be dated. Ratios of CFC data indicate that some rangeland water may contain as much as 5% to 30% young water (ages of less than or equal to two to 11.5 years) mixed with old regional background water. The relatively low residence times of ground water in irrigated parts of the ESRP Aquifer and the dilution with low-NO3 irrigation water from the Snake River lower the potential for NO3 contamination in agricultural areas. [source] Palaeoclimate reconstruction on Big Lyakhovsky Island, north Siberia,hydrogen and oxygen isotopes in ice wedgesPERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2002Hanno Meyer Abstract Late Quaternary permafrost deposits on Big Lyakhovsky Island (New Siberian Islands, Russian Arctic) were studied with the aim of reconstructing the palaeoclimatic and palaeoenvironmental conditions of northern Siberia. Hydrogen and oxygen stable isotope analyses are presented for six different generations of ice wedges as well as for recent ice wedges and precipitation. An age of about 200 ka BP was determined for an autochtonous peat layer in ice-rich deposits by U/Th method, containing the oldest ice wedges ever analysed for hydrogen and oxygen isotopes. The palaeoclimatic reconstruction revealed a period of severe winter temperatures at that time. After a gap in the sedimentation history of several tens of thousands of years, ice-wedge growth was re-initiated around 50 ka BP by a short period of extremely cold winters and rapid sedimentation leading to ice-wedge burial and characteristic ice-soil wedges (,polosatics'). This corresponds to the initial stage for the Late Weichselian Ice Complex, a peculiar cryolithogenic periglacial formation typical of the lowlands of northern Siberia. The Ice Complex ice wedges reflect cold winters and similar climatic conditions as around 200 ka BP. With a sharp rise in ,18O of 6, and ,D of 40,, the warming trend between Pleistocene and Holocene ice wedges is documented. Stable isotope data of recent ice wedges show that Big Lyakhovsky Island has never been as warm in winter as today. Copyright © 2002 John Wiley & Sons, Ltd. [source] A stable isotope record from freshwater lake shells of the eastern Tibetan Plateau, China, during the past two centuriesBOREAS, Issue 1 2007JINGLU WU Wu, J. L., Schleser, G. H., Lücke, A. & Li, S. 2007 (January): A stable isotope record from freshwater lake shells of the eastern Tibetan Plateau, China, during the past two centuries. Boreas, Vol. 36, pp. 38,46. Oslo. ISSN 0300,9483. Lake Xingcuo is a small, closed, hardwater lake situated in the eastern Tibetan Plateau. Stable isotope data (,18O and ,13C) from the freshwater snail Gyraulus sibirica (Dunker) in a 34-cm-long, radioactive isotope-dated sediment core represent the past 200 years of Lake Xingcuo environmental history. Carbon and oxygen isotope ratios in the shells of the snail yield information on the isotopic composition of the water in which the shell was formed, which in turn relates to climatic conditions prevailing during the snail's life-span. Living and fossil shells from Lake Xingcuo were collected. ,18O values in the living shells from Lake Xingcuo are in equilibrium with ambient waters, while ,13C values may trace snail dietary carbon. On comparing ,18O and ,13C in the shell of Gyraulus sibirica with monitored data for the period 1954,1995, we found that the ,18O composition in the shell is an efficient proxy revealing air temperature during the warmer months from April to September. There is a positive correlation between the ,18O in the shells of Gyraulus sibirica and the running average temperature of the warmer months. Climatic variability in the eastern Tibetan Plateau for the past two centuries has been inferred from the ,18O record from the freshwater snails in the sediments of Lake Xingcuo. As such, the last 200 years' palaeoclimatic record for this region can be separated into three periods representing oscillations between warm and cool conditions consistent with the Guliya ice record in the Tibetan Plateau. [source] Syntectonic infiltration by meteoric waters along the Sevier thrust front, southwest MontanaGEOFLUIDS (ELECTRONIC), Issue 4 2006A. C. RYGEL Abstract Structural, petrographic, and isotopic data for calcite veins and carbonate host-rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O-rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ,0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50,80°C for Cretaceous veins, 60,80°C for Eocene veins) fluids interacted with wall-rock carbonates at shallow depths (3,4 km in the Cretaceous, 2,3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra- and inter-vein variation in ,18O and ,13C. Carbonate host-rocks have a mean ,18OV-SMOW value of +22.2 ± 3, (1,), and both the Cretaceous veins and Eocene veins have ,18O ranging from values similar to those of the host-rocks to as low as +5 to +6,. The variation in vein ,13CV-PDB of ,1 to approximately +6, is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) ,18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ,18.5 to ,12.5,. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O ,18O values are ,16.3 to ,13.5,. Fluid,rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water ,18O related to changing paleogeography. Meteoric water-influenced ,18O values calculated here for Cretaceous to Eocene vein-forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern-day precipitation, in this part of the Idaho-Montana thrust belt. [source] Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidenceGEOFLUIDS (ELECTRONIC), Issue 3 2005MIKHAIL V. NAUMOVArticle first published online: 14 JUL 200 Abstract Any hypervelocity impact generates a hydrothermal circulation system in resulting craters. Common characteristics of hydrothermal fluids mobilized within impact structures are considered, based on mineralogical and geochemical investigations, to date. There is similarity between the hydrothermal mineral associations in the majority of terrestrial craters; an assemblage of clay minerals,zeolites,calcite,pyrite is predominant. Combining mineralogical, geochemical, fluid inclusion, and stable isotope data, the distinctive characteristics of impact-generated hydrothermal fluids can be distinguished as follows: (i) superficial, meteoric and ground water and, possibly, products of dehydration and degassing of minerals under shock are the sources of hot water solutions; (ii) shocked target rocks are sources of the mineral components of the solutions; (iii) flow of fluids occurs mainly in the liquid state; (iv) high rates of flow are likely (10,4 to 10,3 m s,1); (v) fluids are predominantly aqueous and of low salinity; (vi) fluids are weakly alkaline to near-neutral (pH 6,8) and are supersaturated in silica during the entire hydrothermal process because of the strong predominance of shock-disordered aluminosilicates and fusion glasses in the host rocks; and (vii) variations in the properties of the circulating solutions, as well as the spatial distribution of secondary mineral assemblages are controlled by tempera ure gradients within the circulation cell and by a progressive cooling of the impact crater. Products of impact-generated hydrothermal processes are similar to the hydrothermal mineralization in volcanic areas, as well as in modern geothermal systems, but impacts are always characterized by a retrograde sequence of alteration minerals. [source] Dominance of autochthonous autotrophic carbon in food webs of heterotrophic riversOIKOS, Issue 3 2002James H. Thorp This paper addresses the river heterotrophy paradox, "How can animal biomass within riverine food webs be fueled primarily by autochthonous autotrophic production if the ecosystem as a whole is heterotrophic?". Reviewed, stable isotope data from tropical, temperate, and arctic rivers provide evidence consistent with the revised riverine productivity model (RPM): "The primary, annual energy source supporting overall metazoan production and species diversity in mid- to higher-trophic levels of most rivers (,4th order) is autochthonous primary production entering food webs via algal-grazer and decomposer pathways". The revised RPM does not conflict with the heterotrophy paradox because: (a) the decomposer (microbial loop) food pathway processes most of the transported, allochthonous and autochthonous carbon and, with algal respiration in some cases, is primarily responsible for a river's heterotrophic state (P/R<1); but (b) biomass production of mid- to higher-trophic levels is principally supported by an algal-grazer (phytoplankton and benthic microalgae) pathway that is only weakly linked to the decomposer pathway. The reason the algal-grazer pathway supports the majority of metazoan biomass is that allochthonous carbon is mostly recalcitrant, whereas carbon from autochthonous primary production, though much less plentiful, is commonly more labile (easier to assimilate), contains more energy per unit mass, and is typically preferred by metazoa. [source] Southern French Neolithic populations: Isotopic evidence for regional specificities in environment and dietAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010Estelle Herrscher Abstract The Middle Neolithic of the Northwestern Mediterranean area (,4500,3500 BC cal) is characterized by the development of food production techniques as well as by increasing social complexity. These characteristics could have had an impact on human dietary patterns. To evaluate human dietary practices and lifeways of the Middle Neolithic populations from the South of France, stable carbon and nitrogen isotope analysis was carried out on 57 human and 53 faunal bones from seven archaeological sites located in the Languedoc and Garonne regions between 20 and 100 km from the Mediterranean Sea, respectively. Results show regional differences in carbon isotope values. Animal and human bones from the Languedoc region are significantly enriched in 13C relative to the Garonne. Conversely, human and dog bones from the Garonne region are significantly enriched in 15N compared to human and dog bones from the Languedoc region. These results highlight the importance of the local ecosystem in human and animal diet as well as a regional differentiation of palaeodietary behavior, which probably relates to economic and social factors. The comparison of stable isotope data with archaeological and biological evidence does not show any significant intra- or interpopulation differences. However, the presence of human outliers suggests that migration probably occurred, perhaps in relation to the trade of animals and/or materials. This study also highlights the importance of investigating local animal stable isotope values for the interpretation of human palaeodiet. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc. [source] Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil watersRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2010Adam G. West The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46, (,2H) and 15.4, (,18O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35, (,2H) and 11.8, (,18O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument-based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. Copyright © 2010 John Wiley & Sons, Ltd. [source] Stable isotopic evidence for diet at the Imperial Roman coastal site of Velia (1st and 2nd Centuries AD) in Southern ItalyAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009Oliver E. Craig Abstract Here we report on a stable isotope palaeodietary study of a Imperial Roman population interred near the port of Velia in Southern Italy during the 1st and 2nd centuries AD. Carbon and nitrogen stable isotope analyses were performed on collagen extracted from 117 adult humans as well as a range of fauna to reconstruct individual dietary histories. For the majority of individuals, we found that stable isotope data were consistent with a diet high in cereals, with relatively modest contributions of meat and only minor contributions of marine fish. However, substantial isotopic variation was found within the population, indicating that diets were not uniform. We suggest that a number of individuals, mainly but not exclusively males, had greater access to marine resources, especially high trophic level fish. However, the observed dietary variation did not correlate with burial type, number of grave goods, nor age at death. Also, individuals buried at the necropolis at Velia ate much less fish overall compared with the contemporaneous population from the necropolis of Portus at Isola Sacra, located on the coast close to Rome. Marine and riverine transport and commerce dominated the economy of Portus, and its people were in a position to supplement their own stocks of fish with imported goods in transit to Rome, whereas at Velia marine exploitation existed side-by-side with land-based economic activities. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source] |