Stabilizing Activity (stabilizing + activity)

Distribution by Scientific Domains


Selected Abstracts


Synergistic profiles of chain-breaking antioxidants with phosphites and hindered amine light stabilizers in styrene,ethylene,butadiene,styrene (SEBS) block copolymer

JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 1 2006
Cristina Luengo
The photostabilization of poly(styrene- b -ethylene- co -butylene- b -styrene) (SEBS) by phosphite/p -hydroxybenzoate antioxidants and hindered phenol/hindered amine light stabilizers (HALS) was studied by using a variety of spectroscopic methods, including FTIR, UV, and luminescence spectroscopy coupled with crosslinking and hydroperoxide analysis. The results were compared with those obtained for hindered phenols and their combinations with phosphite antioxidants. All the stabilizing packages stabilized the SEBS in terms of the inhibition of discoloration and the formation of hydroperoxides, acetophenone, and oxidation products, as well as chain scission and disaggregation of the styrene units. Although phosphite/p -hydroxybenzoate combinations appeared to reduce the formation of oxidation products, they did not show any remarkable enhancement in long-term stabilization with respect to phenolic/phosphite antioxidants. On the other hand, strong synergistic profiles were found with the HALS. Mobility and diffusion impediments in the polymeric material appeared to play an important role in the stabilizing activity of the HALS. J. VINYL. ADDIT. TECHNOL. 12:8,13, 2006. © 2006 Society of Plastics Engineers [source]


Photo-stabilization of EPDM,clay nanocomposites: effect of antioxidant on the preparation and durability,

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11 2007
Sunil P. Lonkar
Abstract The present study is to examine the photo-stabilization effect of an antioxidant on the photo-oxidation of ethylene-propylene-diene monomer (EPDM),clay nanocomposites. During the preparation of EPDM,clay nanocomposites via melt processing antioxidants are usually incorporated along with clay, which allows phenolic antioxidant molecules to get adsorbed onto acidic clay platelets and their interaction with metallic impurities reduces the stabilizing efficiency of the antioxidant. The nanocomposites were obtained by solution dispersion followed by melt compounding of EPDM and organophilic montmorillonite (OMMT). The samples were characterized by conventional tools such as X-ray diffraction (XRD), Fourier Transform Infra Red (FT-IR) spectroscopy, and thermo-gravimetric analysis (TGA). It was found, upon photo-irradiation (,,>,290,nm) studies by following the changes in functional groups and surface morphology, that photo-degradation was lowered by the antioxidant and the efficiency of the antioxidant could be improved by initial incorporation of antioxidant in the EPDM matrix. In EPDM,clay nanocomposites, a stabilizing activity of the antioxidant was observed above some threshold concentration of the antioxidant. The relationship between the nanoclay reinforcement and stabilizing efficiency in terms of photo-oxidation and surface morphology for their applicability are discussed. The methodology adopted for this study is also justified through our observation. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Properties of fucoidan from Cladosiphon okamuranus tokida in gastric mucosal protection

BIOFACTORS, Issue 4 2000
Hideyuki Shibata
Abstract To elucidate the anti-ulcer potential of Cladosiphon fucoidan, anti-peptic activity, bFGF stabilizing activity and inflammatory properties of this and related substances were investigated. Anti-peptic activity was observed with this and other sulfated polysaccharides such as dextran sulfate, carrageenan, and Fucus fucoidan. However, non-sulfated polysaccharides such as mannan and dextran did not exert the anti-peptic activity. The loss of bFGF bioactivity was prevented by all sulfated polysaccharides tested except chondroitin sulfate, at pH 7.4 and at pH 4.0. At pH 2.0, only heparin protected the bFGF activity. The generation of superoxide by macrophages and PMNs was stimulated by dextran sulfate, carrageenan, and Fucus fucoidan, whereas Cladosiphon fucoidan, heparin and chondroitin did not. Dextran sulfate, carrageenan, and Fucus fucoidan also stimulated the secretion of TNF, from macrophages, while Cladosiphon fucoidan did not. Thus, Cladosiphon fucoidan is a sulfated polysaccharide without inflammatory action. These results suggest that Cladosiphon fucoidan is a safe substance with potential for gastric protection. [source]


A Comparison of the Effects of Olopatadine and Ketotifen on Model Membranes

ACTA OPHTHALMOLOGICA, Issue 2000
Howard Brockman
ABSTRACT. Olopatadine is a human conjunctival mast cell stabilizer with anti-histaminic activity. Ketotifen is an older molecule that possesses antihistaminic activity and is reported to have additional pharmacological properties. The interactions of these two compounds with model membranes (i.e., monolayers of 1-stearoyl-2-oleoyl-sn-glycerophosphocholine at the argon-buffer interface), and natural (i.e., erythrocyte) membranes were compared in an effort to understand the differences in their biological activities. Drug-lipid interaction with monolayers was determined by monitoring the surface pressure as a function of the drug concentration in the aqueous phase supporting the monolayer. Drug interaction with erythrocyte membranes was determined by monitoring changes in the permeability of the membranes to hemoglobin and 6-carboxyfluorescein as a function of drug concentration in the medium. Olopatadine and ketotifen are both intrinsically surface active and both interact with phospholipid monolayers. However, in both the presence and absence of lipid monolayers, the changes in surface pressure induced by olopatadine are lower than those caused by ketotifen. The effects of these two drugs on cell membranes were dramatically different. Exposure of bovine erythrocytes to increasing concentrations of ketotifen (1,10 mM) resulted in complete hemolysis of the cells, whereas olopatadine (1,10 mM) caused only minimal hemolysis (<8%). Consistent results were obtained in experiments measuring the leakage of 6-carboxyfluorescein from erythrocyte ghosts as a more sensitive marker of membrane perturbation. Olopatadine treatment (0.1,10 mM) minimally perturbed the cell membrane while ketotifen (1,10 mM) caused a concentration dependent release of the fluorescent marker. These data demonstrate fundamental differences between the two drugs in their effects on cell membranes. Moreover, the differences are consistent with the surface activities of the two compounds measured in monolayers and with reported differences in their pharmacological activities. These findings offer an explanation for the biphasic non-specific cytotoxic effect of ketotifen on histamine release from mast cells and may account for the non-lytic mast cell stabilizing activity of olopatadine. [source]