Home About us Contact | |||
Structural MRI (structural + mri)
Selected AbstractsMRI and cognitive impairment in Parkinson's disease,MOVEMENT DISORDERS, Issue S2 2009Naroa Ibarretxe-Bilbao PhD Abstract Patients with Parkinson's disease (PD) may present impairment in cognitive functions even at early stages of the disease. When compared with the general population, their risk of dementia is five to six times higher. Recent investigations using structural MRI have shown that dementia in PD is related to cortical structural changes and that specific cognitive dysfunctions can be attributed to atrophy in specific structures. We review the structural MRI studies carried out in PD using either a manual region of interest (ROI) approach or voxel-based morphometry (VBM). ROI studies have shown that hippocampal volume is decreased in patients with PD with and without dementia; in addition, hippocampal atrophy correlated with deficits in verbal memory. VBM studies have demonstrated that dementia in PD involves structural changes in limbic areas and widespread cortical atrophy. Findings in nondemented patients with PD are less conclusive, possibly because cognitively heterogeneous groups of patients have been studied. Patients with PD with cognitive impairment and/or visual hallucinations present greater brain atrophy than patients without these characteristics. These findings suggest that cortical atrophy is related to cognitive dysfunction in PD and precedes the development of dementia. Structural MRI might therefore provide an early marker for dementia in PD. © 2009 Movement Disorder Society [source] Neuroplasticity predicts outcome of optic neuritis independent of tissue damageANNALS OF NEUROLOGY, Issue 1 2010Thomas M. Jenkins MRCP Objectives To determine whether lateral occipital complex (LOC) activation with functional magnetic resonance imaging (fMRI) predicts visual outcome after clinically isolated optic neuritis (ON). To investigate the reasons behind good recovery following ON, despite residual optic nerve demyelination and neuroaxonal damage. Methods Patients with acute ON and healthy volunteers were studied longitudinally over 12 months. Structural MRI, visual evoked potentials (VEPs), and optical coherence tomography (OCT) were used to quantify acute inflammation, demyelination, conduction block, and later to estimate remyelination and neuroaxonal loss over the entire visual pathway. The role of neuroplasticity was investigated using fMRI. Multivariable linear regression analysis was used to study associations between vision, structure, and function. Results Greater baseline fMRI responses in the LOCs were associated with better visual outcome at 12 months. This was evident on stimulation of either eye (p = 0.007 affected; p = 0.020 fellow eye), and was independent of measures of demyelination and neuroaxonal loss. A negative fMRI response in the LOCs at baseline was associated with a relatively worse visual outcome. No acute electrophysiological or structural measures, in the anterior or posterior visual pathways, were associated with visual outcome. Interpretation Early neuroplasticity in higher visual areas appears to be an important determinant of recovery from ON, independent of tissue damage in the anterior or posterior visual pathway, including neuroaxonal loss (as measured by MRI, VEP, and OCT) and demyelination (as measured by VEP). ANN NEUROL 2010;67:99,113 [source] Structural MRI and MRS abnormalities in bipolar disorderBIPOLAR DISORDERS, Issue 2002Jair C Soares Soares JC. Structural MRI and MRS abnormalities in bipolar disorder. Bipolar Disord 2002: 4(Suppl. 1): 87. © Blackwell Munksgaard, 2002 [source] A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorderAUTISM RESEARCH, Issue 5 2009Julia A. Scott Abstract Magnetic resonance imaging (MRI) and postmortem neuropathological studies have implicated the cerebellum in the pathophysiology of autism. Controversy remains, however, concerning the nature and the consistency of cerebellar alterations. MRI studies of the cross-sectional area of the vermis have found both decreases and no difference in autism groups. Volumetric analysis of the vermis, which is less prone to "plane of section artifacts" may provide a more reliable assessment of size differences but few such studies exist in the literature. Here we present the results of a volumetric analysis of the structure of the whole cerebellum and its components in children and adolescents with autism spectrum disorders. Structural MRI's were acquired from 62 male participants (7.5 to 18.5 years-old) who met criteria for the following age-matched diagnostic groups: low functioning autism, high functioning autism (HFA), Asperger syndrome, and typically developing children. When compared to controls, the midsagittal area of the vermis, or of subgroups of lobules, was not reduced in any of the autism groups. However, we did find that total vermis volume was decreased in the combined autism group. When examined separately, the vermis of only the HFA group was significantly reduced compared to typically developing controls. Neither IQ nor age predicted the size of the vermis within the autism groups. There were no differences in the volume of individual vermal lobules or cerebellar hemispheres. These findings are discussed in relation to the pathology of autism and to the fairly common alterations of vermal morphology in various neurodevelopmental disorders. [source] Increased right amygdala volume in lithium-treated patients with bipolar I disorderACTA PSYCHIATRICA SCANDINAVICA, Issue 2 2010J. Usher Usher J, Menzel P, Schneider-Axmann T, Kemmer C, Reith W, Falkai P, Gruber O, Scherk H. Increased right amygdala volume in lithium-treated patients with bipolar I disorder. Objective:, The amygdala plays a major role in processing emotional stimuli. Fourteen studies using structural magnetic resonance imaging (MRI) have examined the amygdala volume in paediatric and adult patients with bipolar disorder (BD) compared with healthy controls (HC) and reported inconsistent findings. Lithium has been found to increase grey matter volume, and first evidence points towards an effect on regional brain volume such as the amygdala. Method:, We examined the amygdala volume of euthymic patients with BD treated with lithium (n = 15), without lithium (n = 24) and HC (n = 41) using structural MRI. Results:, Patients treated with lithium exhibited in comparison to HC a larger right absolute (+17.9%, P = 0.015) and relative (+18%, P = 0.017) amygdala volume. There was no significant difference in amygdala volume between patients without lithium treatment and HC. Conclusion:, Lithium appears to have a sustained effect on a central core region of emotional processing and should therefore be considered in studies examining BD. [source] Brain dysmorphology in individuals with severe prenatal alcohol exposureDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 3 2001Sarah L Archibald MA Our previous studies revealed abnormalities on structural MRI (sMRI) in small groups of children exposed to alcohol prenatally. Microcephaly, disproportionately reduced basal ganglia volume, and abnormalities of the cerebellar vermis and corpus callosum were demonstrated. The present study used sMRI to examine in detail the regional pattern of brain hypoplasia resulting from prenatal exposure to alcohol using a higher resolution imaging protocol and larger sample sizes than reported previously. Fourteen participants (mean 11.4 years; eight females, six males) with fetal alcohol syndrome (FAS) and 12 participants (mean 14.8 years; four females, eight males) with prenatal exposure to alcohol (PEA) but without the facial features of FAS were compared to a group of 41 control participants (mean 12.8 years, 20 females, 21 males). Findings of significant microcephaly and disproportionately reduced basal ganglia volumes in the FAS group were confirmed. Novel findings were that in FAS participants, white matter volumes were more affected than gray matter volumes in the cerebrum, and parietal lobes were more affected than temporal and occipital lobes. Among subcortical structures, in contrast to the disproportionate effects on caudate nucleus, the hippocampus was relatively preserved in FAS participants. Differences between the PEA group and controls were generally non-significant; however, among a few of the structures most affected in FAS participants, there was some evidence for volume reduction in PEA participants as well, specifically in basal ganglia and the parietal lobe. There were no group differences in cerebral volume asymmetries. Severe prenatal alcohol exposure appears to produce a specific pattern of brain hypoplasia. [source] Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRIEPILEPSIA, Issue 4 2010Verena Brodbeck Summary Purpose:, Patients with magnetic resonance (MR),negative focal epilepsy (MRN-E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60,90%). Patients with extratemporal MRN-E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI. Methods:, We carried out ESI in 10 operated patients with nonlesional MRI and a postsurgical follow-up of at least 1 year. Five of the 10 patients had extratemporal lobe epilepsy. Evaluation comprised surface and intracranial EEG monitoring of ictal and interictal events, structural MRI, [18F]fluorodeoxyglucose positron emission tomography (FDG-PET), ictal and interictal perfusion single photon emission computed tomography (SPECT) scans. Eight of the 10 patients also underwent intracranial monitoring. Results:, ESI correctly localized the epileptic focus within the resection margins in 8 of 10 patients, 9 of whom experienced favorable postsurgical outcomes. Discussion:, The results highlight the diagnostic value of ESI and encourage broadening its application to patients with MRN-E. If the surface EEG contains fairly localized spikes, ESI contributes to the presurgical decision process. [source] Evolution of striatal degeneration in McLeod syndromeEUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2010P. O. Valko Background and purpose:, McLeod neuroacanthocytosis syndrome (MLS) is an X-linked multisystem disorder with CNS manifestations resembling Huntington disease. Neuroimaging studies revealed striatal atrophy with predominance of the caudate nucleus. Our previous cross-sectional MRI study showed an association of volume loss in the caudate nucleus and putamen with the disease duration. Methods:, In the present study, we examined three brothers with genetically confirmed diagnosis of MLS using an observer-independent and fully automated subcortical segmentation procedure to measure striatal volumes. Results:, In a cross-sectional comparison with 20 healthy age-matched control men, the volumes of the caudate nucleus of the three patients were significantly smaller as confirmed by z -score transformations. On an individual basis, volumes in the two more severely affected and older patients were smaller than in the less affected younger brother. Longitudinal MRI-based measurements over 7 years demonstrated a statistical trend towards significant decreased caudate volumes in McLeod patients. Conclusions:, Our findings indicate that structural MRI combined with fully automated computational morphometric analyses represents an objective and observer-independent imaging tool for the representation of progressive striatal degeneration in MLS and might be a valuable methodology for cross-sectional as well as longitudinally volumetric studies in other rare neurodegenerative diseases, even on individual patients. [source] Sensorimotor network rewiring in mild cognitive impairment and Alzheimer's diseaseHUMAN BRAIN MAPPING, Issue 4 2010Federica Agosta Abstract This study aimed at elucidating whether (a) brain areas associated with motor function show a change in functional magnetic resonance imaging (fMRI) signal in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD), (b) such change is linear over the course of the disease, and (c) fMRI changes in aMCI and AD are driven by hippocampal atrophy, or, conversely, reflect a nonspecific neuronal network rewiring generically associated to brain tissue damage. FMRI during the performance of a simple motor task with the dominant right-hand, and structural MRI (i.e., dual-echo, 3D T1-weighted, and diffusion tensor [DT] MRI sequences) were acquired from 10 AD patients, 15 aMCI patients, and 11 healthy controls. During the simple-motor task, aMCI patients had decreased recruitment of the left (L) inferior frontal gyrus compared to controls, while they showed increased recruitment of L postcentral gyrus and head of L caudate nucleus, and decreased activation of the cingulum compared with AD patients. Effective connectivity was altered between primary sensorimotor cortices (SMC) in aMCI patients vs. controls, and between L SMC, head of L caudate nucleus, and cingulum in AD vs. aMCI patients. Altered fMRI activations and connections were correlated with the hippocampal atrophy in aMCI and with the overall GM microstructural damage in AD. Motor-associated functional cortical changes in aMCI and AD mirror fMRI changes of the cognitive network, suggesting the occurrence of a widespread brain rewiring with increasing structural damage rather than a specific response of cognitive network. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source] Prenatal Alcohol Exposure and Interhemispheric Transfer of Tactile Information: Detroit and Cape Town FindingsALCOHOLISM, Issue 9 2009Neil C. Dodge Background:, Previous research has demonstrated that heavy prenatal alcohol exposure affects the size and shape of the corpus callosum (CC) and compromises interhemispheric transfer of information. The aim of this study was to confirm the previous reports of poorer performance on a finger localization test (FLT) of interhemispheric transfer in a cohort of heavily exposed children and to extend these findings to a cohort of moderately exposed young adults. Methods:, In Study 1, the FLT was administered to 40 heavily exposed and 23 nonexposed children from the Cape Coloured community of Cape Town, South Africa, who were evaluated for fetal alcohol syndrome (FAS) dysmorphology and growth. Anatomical images of the CC were obtained using structural MRI on a subset of these children. In Study 2, the FLT was administered to a cohort of 85 moderate-to-heavily exposed young adults participating in a 19-year follow-up assessment of the Detroit Prenatal Alcohol Exposure cohort, whose alcohol exposure had been ascertained prospectively during gestation. Results:, In Study 1, children with FAS showed more transfer-related errors than controls after adjustment for confounding, and increased transfer-related errors were associated with volume reductions in the isthmus and splenium of the CC. In Study 2, transfer-related errors were associated with quantity of alcohol consumed per occasion during pregnancy. More errors were made if the mother reported binge drinking (,5 standard drinks) during pregnancy than if she drank regularly (M , 1 drink/day) without binge drinking. Conclusions:, These findings confirm a previous report of impaired interhemispheric transfer of tactile information in children heavily exposed to alcohol in utero and extend these findings to show that these deficits are also seen in more moderately exposed individuals, particularly those exposed to binge-like pregnancy drinking. [source] Automatic quality assessment in structural brain magnetic resonance imaging,MAGNETIC RESONANCE IN MEDICINE, Issue 2 2009Bénédicte Mortamet Abstract MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T1 -weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore. Magn Reson Med, 2009. © 2009 Wiley-Liss, Inc. [source] MRI and cognitive impairment in Parkinson's disease,MOVEMENT DISORDERS, Issue S2 2009Naroa Ibarretxe-Bilbao PhD Abstract Patients with Parkinson's disease (PD) may present impairment in cognitive functions even at early stages of the disease. When compared with the general population, their risk of dementia is five to six times higher. Recent investigations using structural MRI have shown that dementia in PD is related to cortical structural changes and that specific cognitive dysfunctions can be attributed to atrophy in specific structures. We review the structural MRI studies carried out in PD using either a manual region of interest (ROI) approach or voxel-based morphometry (VBM). ROI studies have shown that hippocampal volume is decreased in patients with PD with and without dementia; in addition, hippocampal atrophy correlated with deficits in verbal memory. VBM studies have demonstrated that dementia in PD involves structural changes in limbic areas and widespread cortical atrophy. Findings in nondemented patients with PD are less conclusive, possibly because cognitively heterogeneous groups of patients have been studied. Patients with PD with cognitive impairment and/or visual hallucinations present greater brain atrophy than patients without these characteristics. These findings suggest that cortical atrophy is related to cognitive dysfunction in PD and precedes the development of dementia. Structural MRI might therefore provide an early marker for dementia in PD. © 2009 Movement Disorder Society [source] Medial temporal lobe function and structure in mild cognitive impairmentANNALS OF NEUROLOGY, Issue 1 2004Bradford C. Dickerson MD Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Ann Neurol 2004;56:27,35 [source] |