Structural Genomics Project (structural + genomics_project)

Distribution by Scientific Domains


Selected Abstracts


Computer-aided NMR assay for detecting natively folded structural domains,

PROTEIN SCIENCE, Issue 4 2006
Takayuki Hondoh
Abstract Structural genomics projects require strategies for rapidly recognizing protein sequences appropriate for routine structure determination. For large proteins, this strategy includes the dissection of proteins into structural domains that form stable native structures. However, protein dissection essentially remains an empirical and often a tedious process. Here, we describe a simple strategy for rapidly identifying structural domains and assessing their structures. This approach combines the computational prediction of sequence regions corresponding to putative domains with an experimental assessment of their structures and stabilities by NMR and biochemical methods. We tested this approach with nine putative domains predicted from a set of 108 Thermus thermophilus HB8 sequences using PASS, a domain prediction program we previously reported. To facilitate the experimental assessment of the domain structures, we developed a generic 6-hour His-tag-based purification protocol, which enables the sample quality evaluation of a putative structural domain in a single day. As a result, we observed that half of the predicted structural domains were indeed natively folded, as judged by their HSQC spectra. Furthermore, two of the natively folded domains were novel, without related sequences classified in the Pfam and SMART databases, which is a significant result with regard to the ability of structural genomics projects to uniformly cover the protein fold space. [source]


The hypothetical protein Atu4866 from Agrobacterium tumefaciens adopts a streptavidin-like fold

PROTEIN SCIENCE, Issue 1 2008
Xuanjun Ai
Abstract Atu4866 is a 79-residue conserved hypothetical protein of unknown function from Agrobacterium tumefaciens. Protein sequence alignments show that it shares ,60% sequence identity with 20 other hypothetical proteins of bacterial origin. However, the structures and functions of these proteins remain unknown so far. To gain insight into the function of this family of proteins, we have determined the structure of Atu4866 as a target of a structural genomics project using solution NMR spectroscopy. Our results reveal that Atu4866 adopts a streptavidin-like fold featuring a ,-barrel/sandwich formed by eight antiparallel ,-strands. Further structural analysis identified a continuous patch of conserved residues on the surface of Atu4866 that may constitute a potential ligand-binding site. [source]


On the use of DXMS to produce more crystallizable proteins: Structures of the T. maritima proteins TM0160 and TM1171

PROTEIN SCIENCE, Issue 12 2004
Glen Spraggon
DXMS, deuterium exchange mass spectroscopy Abstract The structure of two Thermotoga maritima proteins, a conserved hypothetical protein (TM0160) and a transcriptional regulator (TM1171), have now been determined at 1.9 Å and 2.3 Å resolution, respectively, as part of a large-scale structural genomics project. Our first efforts to crystallize full-length versions of these targets were unsuccessful. However, analysis of the recombinant purified proteins using the technique of enhanced amide hydrogen/deuterium exchange mass spectroscopy (DXMS) revealed substantial regions of rapid amide deuterium hydrogen exchange, consistent with flexible regions of the structures. Based on these exchange data, truncations were designed to selectively remove the disordered C-terminal regions, and the resulting daughter proteins showed greatly enhanced crystallizability. Comparative DXMS analysis of full-length protein versus truncated forms demonstrated complete and exact preservation of the exchange rate profiles in the retained sequence, indicative of conservation of the native folded structure. This study presents the first structures produced with the aid of the DXMS method for salvaging intractable crystallization targets. The structure of TM0160 represents a new fold and highlights the use of this approach where any prior structural knowledge is absent. The structure of TM1171 represents an example where the lack of a substrate/cofactor may impair crystallization. The details of both structures are presented and discussed. [source]


On increasing protein-crystallization throughput for X-ray diffraction studies

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2005
Ashit K. Shah
Two recent developments, a novel screening/optimization strategy that considerably reduces the number of trials required to produce diffraction-size crystals and a simple modification that doubles the screening capacity of the Douglas Instruments ORYX 1-6 protein-crystallization robot, have been implemented into a structural genomics project. The new two-step screening/optimization strategy yields diffraction-quality crystals directly from the screening process, reducing the need for further optimization. The ORYX modification involves the addition of extensions to the sample- and oil-delivery arms and software modifications that allow two plates to be set up simultaneously. [source]


Computer-aided NMR assay for detecting natively folded structural domains,

PROTEIN SCIENCE, Issue 4 2006
Takayuki Hondoh
Abstract Structural genomics projects require strategies for rapidly recognizing protein sequences appropriate for routine structure determination. For large proteins, this strategy includes the dissection of proteins into structural domains that form stable native structures. However, protein dissection essentially remains an empirical and often a tedious process. Here, we describe a simple strategy for rapidly identifying structural domains and assessing their structures. This approach combines the computational prediction of sequence regions corresponding to putative domains with an experimental assessment of their structures and stabilities by NMR and biochemical methods. We tested this approach with nine putative domains predicted from a set of 108 Thermus thermophilus HB8 sequences using PASS, a domain prediction program we previously reported. To facilitate the experimental assessment of the domain structures, we developed a generic 6-hour His-tag-based purification protocol, which enables the sample quality evaluation of a putative structural domain in a single day. As a result, we observed that half of the predicted structural domains were indeed natively folded, as judged by their HSQC spectra. Furthermore, two of the natively folded domains were novel, without related sequences classified in the Pfam and SMART databases, which is a significant result with regard to the ability of structural genomics projects to uniformly cover the protein fold space. [source]


An improved protocol for rapid freezing of protein samples for long-term storage

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2004
Rapid freezing of protein samples
Freezing of purified protein drops directly in liquid nitrogen is a convenient technique for the long-term storage of protein samples. Although this enhances reproducibility in follow-up crystallization experiments, some protein samples are not amenable to this technique. It has been discovered that plunging PCR tubes containing protein samples into liquid nitrogen results in more rapid freezing of the samples and can safely preserve some proteins that are damaged by drop-freezing. The PCR-tube method can also be adapted to a PCR-plate freezing method with applications for high-throughput and structural genomics projects. [source]