Home About us Contact | |||
Structural Brain Abnormalities (structural + brain_abnormality)
Selected AbstractsBOLD Response During Spatial Working Memory in Youth With Heavy Prenatal Alcohol ExposureALCOHOLISM, Issue 12 2009Andrea D. Spadoni Background:, Prenatal alcohol exposure has been consistently linked to neurocognitive deficits and structural brain abnormalities in affected individuals. Structural brain abnormalities observed in regions supporting spatial working memory (SWM) may contribute to observed deficits in visuospatial functioning in youth with fetal alcohol spectrum disorders (FASDs). Methods:, We used functional magnetic resonance imaging (fMRI) to assess the blood oxygen level dependent (BOLD) response in alcohol-exposed individuals during a SWM task. There were 22 young subjects (aged 10,18 years) with documented histories of heavy prenatal alcohol exposure (ALC, n = 10), and age- and sex-matched controls (CON, n = 12). Subjects performed a SWM task during fMRI that alternated between 2-back location matching (SWM) and simple attention (vigilance) conditions. Results:, Groups did not differ on task accuracy or reaction time to the SWM condition, although CON subjects had faster reaction times during the vigilance condition (617 millisecond vs. 684 millisecond, p = 0.03). Both groups showed similar overall patterns of activation to the SWM condition in expected regions encompassing bilateral dorsolateral prefrontal lobes and parietal areas. However, ALC subjects showed greater BOLD response to the demands of the SWM relative to the vigilance condition in frontal, insular, superior, and middle temporal, occipital, and subcortical regions. CON youth evidenced less increased brain activation to the SWM relative to the vigilance task in these areas (p < 0.05, clusters > 1,664 ,l). These differences remained significant after including Full Scale IQ as a covariate. Similar qualitative results were obtained after subjects taking stimulant medication were excluded from the analysis. Conclusions:, In the context of equivalent performance to a SWM task, the current results suggest that widespread increases in BOLD response in youth with FASDs could either indicate decreased efficiency of relevant brain networks, or serve as a compensatory mechanism for deficiency at neural and/or cognitive levels. In context of existing fMRI evidence of heightened prefrontal activation in response to verbal working memory and inhibition demands, the present findings may indicate that frontal structures are taxed to a greater degree during cognitive demands in individuals with FASDs. [source] Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorderTHE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 12 2007Sarah Brieber Background:, Although autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are two distinct neurodevelopmental diseases, they share behavioural, neuropsychological and neurobiological characteristics. For the identification of endophenotypes across diagnostic categories, further investigations of phenotypic overlap between ADHD and autism at the behavioural, neurocognitive, and brain levels are needed. Methods:, We examined regional grey matter differences and similarities in children and adolescents with ASD and ADHD in comparison to healthy controls using structural magnetic resonance imaging (MRI) and voxel-based morphometry. Results:, With regard to clinical criteria, the clinical groups did not differ with respect to ADHD symptoms; however, only patients with ASD showed deficits in social communication and interaction, according to parental rating. Structural abnormalities across both clinical groups compared to controls became evident as grey matter reductions in the left medial temporal lobe and as higher grey matter volumes in the left inferior parietal cortex. In addition, autism-specific brain abnormalities were found as increased grey matter volume in the right supramarginal gyrus. Conclusions:, While the shared structural deviations in the medial temporal lobe might be attributed to an unspecific delay in brain development and might be associated with memory deficits, the structural abnormalities in the inferior parietal lobe may correspond to attentional deficits observed in both ASD and ADHD. By contrast, the autism-specific grey matter abnormalities near the right temporo-parietal junction may be associated with impaired ,theory of mind' abilities. These findings shed some light on both similarities and differences in the neurocognitive profiles of ADHD and ASD patients. [source] Modulation of spatial attention in a child with developmental unilateral neglectDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 4 2003Veronika B Dobler MD Attentional neglect of left space is one of the most striking acquired neurological disorders of adulthood. Recent evidence indicates a link between left spatial neglect and general right-hemisphere impairments in sustained attention and alertness. Poor sustained attention and alertness is also a central feature of other disorders, particularly childhood attention-deficit-hyperactivity disorder (ADHD). Here we present the case of a 7-year-old male showing that frank neglect can be present in children with sustained attention problems without a clear aetiological event, or obvious structural brain abnormalities as indicated by a normal MRI. Experimental amelioration of the neglect through left-hand movement and externally alerting stimulation by uninformative sounds further suggest close similarities to the adult disorder. We suggest that such distortions of spatial attention may be more common in childhood than previously thought. [source] BOLD Response During Spatial Working Memory in Youth With Heavy Prenatal Alcohol ExposureALCOHOLISM, Issue 12 2009Andrea D. Spadoni Background:, Prenatal alcohol exposure has been consistently linked to neurocognitive deficits and structural brain abnormalities in affected individuals. Structural brain abnormalities observed in regions supporting spatial working memory (SWM) may contribute to observed deficits in visuospatial functioning in youth with fetal alcohol spectrum disorders (FASDs). Methods:, We used functional magnetic resonance imaging (fMRI) to assess the blood oxygen level dependent (BOLD) response in alcohol-exposed individuals during a SWM task. There were 22 young subjects (aged 10,18 years) with documented histories of heavy prenatal alcohol exposure (ALC, n = 10), and age- and sex-matched controls (CON, n = 12). Subjects performed a SWM task during fMRI that alternated between 2-back location matching (SWM) and simple attention (vigilance) conditions. Results:, Groups did not differ on task accuracy or reaction time to the SWM condition, although CON subjects had faster reaction times during the vigilance condition (617 millisecond vs. 684 millisecond, p = 0.03). Both groups showed similar overall patterns of activation to the SWM condition in expected regions encompassing bilateral dorsolateral prefrontal lobes and parietal areas. However, ALC subjects showed greater BOLD response to the demands of the SWM relative to the vigilance condition in frontal, insular, superior, and middle temporal, occipital, and subcortical regions. CON youth evidenced less increased brain activation to the SWM relative to the vigilance task in these areas (p < 0.05, clusters > 1,664 ,l). These differences remained significant after including Full Scale IQ as a covariate. Similar qualitative results were obtained after subjects taking stimulant medication were excluded from the analysis. Conclusions:, In the context of equivalent performance to a SWM task, the current results suggest that widespread increases in BOLD response in youth with FASDs could either indicate decreased efficiency of relevant brain networks, or serve as a compensatory mechanism for deficiency at neural and/or cognitive levels. In context of existing fMRI evidence of heightened prefrontal activation in response to verbal working memory and inhibition demands, the present findings may indicate that frontal structures are taxed to a greater degree during cognitive demands in individuals with FASDs. [source] Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities in Prenatal Mice: Effects of Acute Insult on Gestational Day 8ALCOHOLISM, Issue 6 2009Scott E. Parnell Background:, Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanol's insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. Methods:, For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouin's/Prohance® solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 × 512 × 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 ,m (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. Results:, As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb, hippocampus, and cerebellum; the latter being the most severely affected. Additionally, the septal region and the pituitary were disproportionately large. Linear measures were consistent with those of volume. Other dysmorphologic features noted in the MR scans were choanal stenosis and optic nerve coloboma. Conclusions:, This study demonstrates that exposure to ethanol occurring in mice at stages corresponding to the human fourth week postfertilization results in structural brain abnormalities that are readily identifiable at fetal stages of development. In addition to illustrating the utility of MR microscopy for analysis of an FASD mouse model, this work provides new information that confirms and extends human clinical observations. It also provides a framework for comparison of structural brain abnormalities resulting from ethanol exposure at other developmental stages and dosages. [source] Reduced gray matter volume of dorsal cingulate cortex in patients with obsessive,compulsive disorder: A voxel-based morphometric studyPSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 5 2010Ryohei Matsumoto MD Aims:, Previous morphometric studies using magnetic resonance imaging (MRI) have revealed structural brain abnormalities in obsessive,compulsive disorder (OCD). The aim of the present study was to investigate the alterations in brain structure of patients with OCD using a voxel-based morphometry (VBM) method. Methods:, Sixteen patients with OCD free of comorbid major depression, and 32 sex- and age-matched healthy subjects underwent MRI using a 1.5-T MR scanner. OCD severity was assessed with the Yale,Brown Obsessive,Compulsive Scale (mean ± SD: 22 ± 7.6; range: 7,32). MR images were spatially normalized and segmented using the VBM5 package (http://dbm.neuro.uni-jena.de/vbm/). Statistical analysis was performed using statistical parametric mapping software. Results:, Significant reductions in regional gray matter volume were detected in the left caudal anterior cingulate cortex and right dorsal posterior cingulate cortex in the patients with OCD as compared to healthy controls (uncorrected, P < 0.001). No significant differences in white matter volumes were observed in any brain regions of the patients. No significant correlation between Yale,Brown Obsessive,Compulsive Scale score and regional gray matter or white matter volume was observed. Conclusions:, Regional gray matter alteration in the dorsal cingulate cortex, which is suggested to play a role in non-emotional cognitive processes, may be related to the pathophysiology in OCD. [source] Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studiesBIPOLAR DISORDERS, Issue 8 2009Antonio Vita Objectives:, To perform a comprehensive quantitative analysis of the existing magnetic resonance imaging (MRI) studies of the brain conducted on patients with first-episode bipolar disorder (BD). Methods:, A systematic search was performed of MRI studies that reported quantitative measurements of brain volumes of first-episode bipolar patients and healthy controls. Four meta-analyses were performed for four cerebral regions. Results:, Significant overall effect sizes were demonstrated, with a reduction detected in patients with BD for total intracranial and white matter volumes, but not for gray matter and whole brain volumes. Conclusions:, The available MRI literature indicates that specific structural brain abnormalities are already present in first-episode bipolar patients. These do not overlap with those emerging from previous meta-analyses performed in patients with chronic BD. These findings support the hypothesis of different patterns of changes in brain morphology over the time course of bipolar disorder. [source] The neuropsychology and neuroanatomy of bipolar affective disorder: a critical reviewBIPOLAR DISORDERS, Issue 3 2001Carrie E Bearden Objectives: To present a comprehensive review of the existing neuropsychological and neuroimaging literature on bipolar affective disorder. This review critically evaluates two common conceptions regarding the neuropsychology of bipolar disorder: 1) that, in contrast to schizophrenia, bipolar affective disorder is not associated with general cognitive impairment independent of illness episodes, and 2) relative right hemisphere (RH) dysfunction is implicated in bipolar illness patients, supported by reports of relatively greater impairment in visuospatial functioning, lateralization abnormalities, and mania secondary to RH lesions. Methods: The major computerized databases (Medline and PSYCInfo) were consulted in order to conduct a comprehensive, integrated review of the literature on the neuropsychology and neuroanatomy of bipolar disorder. Articles meeting specified criteria were included in this review. Results: In a critical evaluation of the above notions, this paper determines that: 1) while there is little evidence for selective RH dysfunction, significant cognitive impairment may be present in bipolar illness, particularly in a subgroup of chronic, elderly or multiple-episode patients, suggesting a possible toxic disease process, and 2) the underlying functional correlate of these cognitive deficits may be white matter lesions (,signal hyperintensities') in the frontal lobes and basal ganglia, regions critical for executive function, attention, speeded information processing, learning and memory, and affect regulation. While this hypothesized neural correlate of cognitive impairment in bipolar disorder is speculative, preliminary functional neuroimaging evidence supports the notion of frontal and subcortical hypometabolism in bipolar illness. Conclusions: The etiology of the structural brain abnormalities commonly seen in bipolar illness, and their corresponding functional deficits, remains unknown. It is possible that neurodevelopmental anomalies may play a role, and it remains to be determined whether there is also some pathophysiological progression that occurs with repeated illness episodes. More research is needed on first-episode patients, relatives of bipolar probands, and within prospective longitudinal paradigms in order to isolate disease-specific impairments and genetic markers of neurocognitive function in bipolar disorder. [source] |