Home About us Contact | |||
Structural Asymmetry (structural + asymmetry)
Selected AbstractsStructural asymmetry and intersubunit communication in muscle creatine kinaseACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2007Jeffrey F. Ohren The structure of a transition-state analog complex of a highly soluble mutant (R134K) of rabbit muscle creatine kinase (rmCK) has been determined to 1.65,Å resolution in order to elucidate the structural changes that are required to support and regulate catalysis. Significant structural asymmetry is seen within the functional homodimer of rmCK, with one monomer found in a closed conformation with the active site occupied by the transition-state analog components creatine, MgADP and nitrate. The other monomer has the two loops that control access to the active site in an open conformation and only MgADP is bound. The N-terminal region of each monomer makes a substantial contribution to the dimer interface; however, the conformation of this region is dramatically different in each subunit. Based on this structural evidence, two mutational modifications of rmCK were conducted in order to better understand the role of the amino-terminus in controlling creatine kinase activity. The deletion of the first 15 residues of rmCK and a single point mutant (P20G) both disrupt subunit cohesion, causing the dissociation of the functional homodimer into monomers with reduced catalytic activity. This study provides support for a structural role for the amino-terminus in subunit association and a mechanistic role in active-site communication and catalytic regulation. [source] Structural Correlates of Functional Language Dominance: A Voxel-Based Morphometry StudyJOURNAL OF NEUROIMAGING, Issue 2 2010Andreas Jansen PhD ABSTRACT BACKGROUND AND PURPOSE The goal of this study was to explore the structural correlates of functional language dominance by directly comparing the brain morphology of healthy subjects with left- and right-hemisphere language dominance. METHODS Twenty participants were selected based on their language dominance from a cohort of subjects with known language lateralization. Structural differences between both groups were assessed by voxel-based morphometry, a technique that automatically identifies differences in the local gray matter volume between groups using high-resolution T1-weighted magnetic resonance images. RESULTS The main findings can be summarized as follows: (1) Subjects with right-hemisphere language dominance had significantly larger gray matter volume in the right hippocampus than subjects with left-hemisphere language dominance. (2) Leftward structural asymmetries in the posterior superior temporal cortex, including the planum temporale (PT), were observed in both groups. CONCLUSIONS Our study does not support the still prevalent view that asymmetries of the PT are related in a direct way to functional language lateralization. The structural differences found in the hippocampus underline the importance of the medial temporal lobe in the neural language network. They are discussed in the context of recent findings attributing a critical role of the hippocampus in the development of language lateralization. [source] Natural and accidental torsion in one-storey structures on elastic foundation under non-vertically incident SH-wavesEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2006Javier Avilés Abstract Factors , and , used in equivalent static analysis to account for natural and accidental torsion are evaluated with consideration of soil,structure interaction. The combined torsional effects of structural asymmetry and foundation rotation are examined with reference to a single monosymmetric structure placed on a rigid foundation that is embedded into an elastic half-space, under to the action of non-vertically incident SH waves. Dynamic and accidental eccentricities are developed such that when used together with the code-specified base shear, the resulting static displacement at the flexible edge of the building is identical to that computed from dynamic analysis. It is shown that these eccentricities do not have a unique definition because they depend on both the selection of the design base shear and the criterion used for separation of the torsional effects of foundation rotation from those of structural asymmetry. Selected numerical results are presented in terms of dimensionless parameters for their general application, using a set of appropriate earthquake motions for ensuring generality of conclusions. The practical significance of this information for code-designed buildings is elucidated. Copyright © 2006 John Wiley & Sons, Ltd. [source] Synaptic structure, distribution, and circuitry in the central nervous system of the locust and related insectsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002Alan Hugh David Watson Abstract The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context. Microsc. Res. Tech. 56:210,226, 2002. © 2002 Wiley-Liss, Inc. [source] Structural asymmetry and intersubunit communication in muscle creatine kinaseACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2007Jeffrey F. Ohren The structure of a transition-state analog complex of a highly soluble mutant (R134K) of rabbit muscle creatine kinase (rmCK) has been determined to 1.65,Å resolution in order to elucidate the structural changes that are required to support and regulate catalysis. Significant structural asymmetry is seen within the functional homodimer of rmCK, with one monomer found in a closed conformation with the active site occupied by the transition-state analog components creatine, MgADP and nitrate. The other monomer has the two loops that control access to the active site in an open conformation and only MgADP is bound. The N-terminal region of each monomer makes a substantial contribution to the dimer interface; however, the conformation of this region is dramatically different in each subunit. Based on this structural evidence, two mutational modifications of rmCK were conducted in order to better understand the role of the amino-terminus in controlling creatine kinase activity. The deletion of the first 15 residues of rmCK and a single point mutant (P20G) both disrupt subunit cohesion, causing the dissociation of the functional homodimer into monomers with reduced catalytic activity. This study provides support for a structural role for the amino-terminus in subunit association and a mechanistic role in active-site communication and catalytic regulation. [source] |