Storage Components (storage + component)

Distribution by Scientific Domains


Selected Abstracts


A study on latent heat storage exchangers with the high-temperature phase-change material

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2001
Qiao He
Abstract This paper presents a theoretical analysis and an experimental test on a shell-and-tube latent heat storage exchanger. The heat exchanger is used to recover high-temperature waste heat from industrial furnaces and off-peak electricity. It can also be integrated into a renewable energy system as an energy storage component. A mathematical model describing the unsteady freezing problem coupled with forced convection is solved numerically to predict the performance of the heat exchanger. It provides the basis for an optimum design of the heat exchanger. The experimental study on the heat exchanger is carried out under various operating conditions. Effects of various parameters, such as the inlet temperature, the mass flow rate, the thickness of the phase-change material and the length of the pipes, on the heat transfer performance of the unit are discussed combined with theoretical prediction. The criterion for analyzing and evaluating the performance of heat exchanger is also proposed. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Characterization of the MIPS gene family in Glycine max

PLANT BREEDING, Issue 5 2006
A. S. Chappell
Abstract Phytic acid (myo -inositol-1,2,3,4,5,6-hexakisphosphate) is the primary storage component of phosphorus in plant seeds. The first step in phytic acid biosynthesis is the de novo synthesis of myo -inositol, which is catalyzed by the enzyme D -myo -inositol 3-phosphate synthase (MIPS EC 5.5.1.4). Previous work detected four MIPS genes in soybean (Glycine max). However, only a limited amount of data were available for the MIPS gene family and some of the data were conflicting. The work described here clears up these data and characterizes the MIPS gene family for the purposes of reverse genetic technologies. The complete genomic sequence of all four genes was determined and their expression profile was examined by quantitative real-time reverse transcription-polymerase chain reaction. Our results indicate that the four MIPS genes are highly conserved and temporally and spatially expressed. The MIPS gene family in the low phytic acid soybean line, CX1834, was also characterized since this line displays a phenotype similar to previously characterized MIPS mutants. These data demonstrate that mutations in MIPS genes are not the cause of the low phytic acid phenotype. [source]


Effects of continuous or rotational grazing of two perennial ryegrass varieties on the chemical composition of the herbage and the performance of finishing lambs

GRASS & FORAGE SCIENCE, Issue 3 2007
C. L. Marley
Abstract Plant breeding has developed perennial ryegrass varieties with increased concentrations of water-soluble carbohydrates (WSCs) compared with conventional varieties. Water-soluble carbohydrates are major metabolic and storage components in ryegrass. Therefore, if perennial ryegrass herbage is allowed to grow to greater heights it should contain higher water-soluble carbohydrates concentrations, for example as under rotational grazing rather than continuous grazing by livestock. This study investigated this hypothesis and measured the performance of lambs grazed rotationally and continuously. Replicated plots of the variety AberDart (bred to express high WSC concentrations) or the variety Fennema were grazed by a core group of ten male Cheviot lambs for 10 weeks. Lambs were weighed and replicate forage samples were taken every 7 d. Concentrations of WSC in AberDart herbage were significantly (P < 0·05), but not substantially, higher than those in Fennema herbage. Rotational grazing did not increase the differential in WSC concentration between the AberDart and Fennema varieties. However, there was a tendency (P = 0·07) for lambs rotationally grazing the AberDart swards to have a higher final live weight than lambs grazing the Fennema swards. Overall, lamb performance was increased when either perennial ryegrass variety was rotationally rather than continuously grazed (P < 0·001). [source]


Local Electrochemical Functionality in Energy Storage Materials and Devices by Scanning Probe Microscopies: Status and Perspectives

ADVANCED MATERIALS, Issue 35 2010
Sergei V. Kalinin
Abstract Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer,micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed. [source]


The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects

BIOLOGICAL REVIEWS, Issue 4 2004
Karen B. Helle
ABSTRACT The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III,VII are collectively referred to as,granins'and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms. [source]