Stomatogastric Nervous System (stomatogastric + nervous_system)

Distribution by Scientific Domains


Selected Abstracts


The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations

ACTA ZOOLOGICA, Issue 3 2010
Jacques Bitsch
Abstract Bitsch, J. and Bitsch, C. 2010. The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. ,Acta Zoologica (Stockholm) 91: 249,266 Different interpretations of the segmental composition of the head in mandibulate arthropods are critically reviewed, with particular focus on three closely associated structures: the tritocerebrum, the stomatogastric nervous system and the clypeolabrum. The main conclusions arising from the different discussions are the following. (1) Each tritocerebral ganglion has a dual composition, clearly discernable in some crustacean and hexapod species, including a dorsal portion connected with the second antennae and a ventral portion connected with the stomatogastric nervous system via the frontal ganglion. (2) The suboesophageal commissure linking the tritocerebral lobes of the two sides, can be wholly ascribed to the tritocerebral segment. (3) The stomatogastric nervous system is a morphologically autonomous system that is not fundamentally affected by head metamerization. (4) The clypeolabrum, the epistome,labrum and the hypostome are regarded as homologous formations. The clypeolabrum represents a fundamental structure of the head probably present in the arthropod ground plan. Its close spatial and developmental association with the stomodeum and its derivative, the stomatogastric nervous system, suggests that it is an anterior outgrowth of the forehead arising from a preoral territory (presegmental acron or protocerebral,ocular region?) and secondarily connected with the tritocerebrum, rather than derived from a pair of reduced appendages. [source]


Degenerative and regenerative processes involved in midgut pseudotumor formation in the stick insect (Carausius morosus)

JOURNAL OF MORPHOLOGY, Issue 12 2009
Paul Hoffmann
Abstract Spontaneous and experimentally induced pseudotumor formation in Carausius morosus impairs the midgut tissue homeostasis. Spontaneous pseudotumor formation begins by the break down of a single or a small group of columnar cells (CCs) and is followed by the degeneration of neighboring CCs. There are not only marked similarities but also decisive differences between normal dying CCs in healthy specimens and the degeneration of CCs leading to pseudotumors: in both cases, the apical cell parts with the nucleus are extruded into the midgut lumen, but only during of pseudotumor formation an "amorphous substance" originates from the basal parts of the CCs. Hemocytes are attracted to this substance and form a nodule-like aggregation, which is responsible for the phenotype of pseudotumors. Pseudotumor infestation has also an impact on the midgut nidi, which consist of an intestinal stem cell and several CC progenitor cells. In healthy specimens only one progenitor cell per nidus differentiates at a time, but, several to all progenitor cells differentiate simultaneously in pseudotumor-infested specimens. Extirpation of the ingluvial ganglion in healthy specimens results in an immediate onset of pseudotumor formation and a dramatic acceleration of pseudotumor growth. Importantly, the ultrastructural characteristics of spontaneous and experimentally induced pseudotumors are identical. This supports the idea that the stomatogastric nervous system plays an integral role in the maintenance of midgut tissue homeostasis. J. Morphol., 2009. © 2009 Wiley-Liss, Inc. [source]


Identification, physiological actions, and distribution of TPSGFLGMRamide: a novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Elizabeth A. Stemmler
Abstract In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern. [source]


D2 receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2010
Max F. Oginsky
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D2 receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D2,Pan) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG wholemount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D2,Pan receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D2,Pan receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites. J. Comp. Neurol. 518:255,276, 2010. © 2009 Wiley-Liss, Inc. [source]