Home About us Contact | |||
Square Metre (square + metre)
Selected AbstractsField mapping and digital elevation modelling of submerged and unsubmerged hydraulic jump regions in a bedrock step,pool channelEARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2006Brett L. Vallé Abstract High-resolution tacheometric field surveying was integrated with computer-assisted drafting to visualize and contrast three-dimensional bed and water surface digital elevation models (DEMs) for submerged and unsubmerged hydraulic jump regions in a bedrock step,pool channel. Measurements were conducted for two discharge conditions. Since previous applica-tions of three-dimensional field mapping and digital elevation modelling of stream channels have been limited to smoothly contiguous gravel-bedded systems, surveying was optimized by topographic setting and scaled to localized bed and water surface discontinuities. Traces and visualizations of the jump regions indicated that dichotomous decimetre shifts in water surface topography occurred for both jump regions from lower to higher discharges. Systematic removal of the survey points and DEM differencing indicated that point densities of ten points per square metre, in conjunction with a survey structure targeting grade breaks of 0·3,0·5 m, were required to capture decimetre form variations of the natural jump regions. The DEMs highlight the importance of recognizing the relationship between transcritical flow structures and localized topographic heterogeneities in bedrock channels. Copyright © 2006 John Wiley & Sons, Ltd. [source] Critical periods in the life cycle and the effects of a severe spate vary markedly between four species of elmid beetles in a small streamFRESHWATER BIOLOGY, Issue 8 2006J. M. ELLIOTT Summary 1. The chief objectives were: (i) to describe quantitatively the life cycles of four species of Elmidae, Elmis aenea, Esolus parallelepipedus, Oulimnius tuberculatus and Limnius volkmari; (ii) to use life tables to identify critical periods for survival in the life cycle of each species; (iii) to evaluate the immediate and longer-term effects of a severe spate on densities of the four species. Monthly samples were taken over 63 months at two contrasting sites in a small stream: one in a deep section with macrophytes abundant, and the other in a shallow stony section. 2. There were five larval instars for O. tuberculatus, seven for L. volkmari and six for the other two species. The life cycle of each species took 1 year from egg hatching (chiefly in June for E. aenea and O. tuberculatus, and July for the other species) to pupation in the stream bank and a further year before the adults in the stream matured and laid their eggs. Mature adults were present in most months, but were rare or absent in January and February and attained maximum densities in April for O. tuberculatus and May for the other species. 3. Laboratory experiments provided data on egg hatching and pupation periods and the number of eggs laid per female. Life tables compared maximum numbers per square metre for key life-stages. Within each species, mortality rates between adjacent life-stages were fairly constant among six cohorts and between sites, in spite of large differences in numbers. The only exception for all species was the high adult, but not larval, mortality during a severe spate. 4. Standardised life tables, starting with 1000 eggs, identified key life-stages with the highest mortality, namely the early life-stages for E. aenea (36% mortality), start of the overwintering period to pupation for O. tuberculatus (41%) and L. volkmari (51%), start of pupation to the maximum number of immature adults for E. parallelepipedus (41%) and between the maximum numbers of immature and mature adults for O. tuberculatus (41%). Therefore, critical periods for survival in the life cycle differed between species, presumably because of their different ecological requirements. Similarly, the effects of the spate on adult mortality, and hence egg production, varied between species, being most severe and long-term for E. aenea and O. tuberculatus, less severe for E. parallelepipedus and least severe with a rapid recovery for L. volkmari. Possible reasons for these discrepancies are discussed, but more data are required on the food and microhabitat requirements of the elmids before satisfactory explanations can be found. [source] Respiration and annual fungal production associated with decomposing leaf litter in two streamsFRESHWATER BIOLOGY, Issue 9 2004M. D. Carter Summary 1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478,492 g m,2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m,2; mean ± SE) than Payne Creek (39 ± 9 g m,2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g,1) than those from Payne Creek (54 ± 8 mg g,1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day,1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m,2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m,2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter-year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m,2 in Payne Creek and 7,27 g m,2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%. [source] Growth and Yield Response of Facultative Wheat to Winter Sowing, Freezing Sowing and Spring Sowing at Different Seeding RatesJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2006A. Ozturk Abstract Growth and yield of wheat are affected by environmental conditions and can be regulated by sowing time and seeding rate. In this study, three sowing times [winter sowing (first week of September), freezing sowing (last week of October) and spring sowing (last week of April)] at seven seeding rates (325, 375, 425, 475, 525, 575 and 625 seeds m,2) were investigated during the 2002,03 and 2003,04 seasons, in Erzurum (Turkey) dryland conditions, using Kirik facultative wheat. A split-plot design was used, with sowing times as main plots and seeding rates randomized as subplots. There was a significant year × sowing time interaction for grain yield and kernels per spike. Winter-sown wheat produced a significantly higher leaf area index, leaf area duration, spikes per square metre, kernel weight and grain yield than freezing- and spring-sown wheat. The optimum time of sowing was winter for the facultative cv. Kirik. Grain yields at freezing and spring sowing were low, which was largely the result of hastened crop development and high temperatures during and after anthesis. Increasing seeding rate up to 525 seeds m,2 increased the spikes per square metre at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as sowing time in maximizing grain yield. Changes in spikes per square metre were the major contributors to the grain-yield differences observed among sowing times and seeding rates. Yield increases from higher seeding rates were greater at freezing and spring sowing. We recommended that a seeding rate of 525 seeds m,2 be chosen for winter sowing, and 575 seeds m,2 for freezing and spring sowing. [source] Contrasting interference functions and foraging dispersion in two species of shorebird (Charadrii)JOURNAL OF ANIMAL ECOLOGY, Issue 2 2000Michael G. Yates Summary 1.,Above a threshold density of , 100 birds ha -1, strong interference occurred between redshank Tringa totanus (Linnaeus) feeding by sight on the amphipod crustacean Corophium volutator (Pallas). No aggressive interactions occurred between the birds and the probable cause was prey depression. 2.,Redshank fed in a square metre of mud that had recently been exploited by another redshank much less often than would be expected by chance. By avoiding areas where prey would have been recently exploited, the feeding rate of redshank was up to three times faster than it would have been had they not avoided other foraging redshank. 3.,Bar-tailed godwit fed in a square metre of mud that had been recently exploited by another godwit much more often than would be expected by chance in randomly moving birds. They tended to flock while foraging and showed no tendency to avoid areas where prey would have been recently exploited. 4.,There was no evidence that interference occurred between bar-tailed godwit Limosa lapponica (Linnaeus) feeding on the polychaete lugworm Arenicola marina (Linnaeus) at densities below 300 birds ha -1, even though aggressive interactions occurred between birds. [source] Controlling western corn rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacyJOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2010S. Toepfer Abstract The three larval instars of western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) feed on the roots of maize, Zea mays (L.). The effects of six application techniques on the plant-scale efficacy of the entomopathogenic nematode species, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), in controlling D. v. virgifera populations were assessed in seven field plot experiments in southern Hungary between 2004 and 2007. Approximately 230 000 nematodes were applied per row metre using four different stream spray techniques; or, alternatively 400 000 nematodes per square metre using two different flat spray techniques. Nematode efficacy was assessed by comparing the number of emerging adult D. v. virgifera, and root damage between treatments and untreated controls. All tested nematode application techniques reduced D. v. virgifera density by at least 50% (on average across fields and years). The highest reduction in D. v. virgifera density was 68% and occurred when nematodes were applied into the soil together with maize sowing using a fluid solid stream. Rainfall, the day before application likely increased the control efficacy of H. bacteriophora. Using the 0.00,3.00 node injury damage rating scale, we estimated that potential root damage was prevented by 25,79% when H. bacteriophora was applied. Although, H. bacteriophora can effectively be applied with all of the techniques tested, for optimum performance and minimum costs, it is suggested that the nematodes be applied as follows: (i) as a stream requiring 8,10 times less volume of water than flat sprays, or as a granule requiring no water, and (ii) into the soil when sowing maize, requiring less water than soil surface sprays and avoiding the destruction of nematodes by UV radiation and additional machinery use. [source] Dosage regimens for inhaled therapy in children should be reconsideredJOURNAL OF PAEDIATRICS AND CHILD HEALTH, Issue 2 2002JH Wildhaber Abstract: In current asthma guidelines, dosage regimens for inhalation therapy in children are based on adult doses and are generally titrated per kilogram of bodyweight or per square metre of body surface area. However, these recommendations do not correspond well with current knowledge of aerosol therapy in childhood. Lung deposition of the aerosolised drug is the key determinant for clinical efficacy and for systemic side effects of inhalation therapy. Lung deposition increases with age, whereas lung deposition expressed as a percentage per kilogram bodyweight is age-independent. This finding is explained by the self-regulating effect of age-dependent airway anatomy on lung deposition. Therefore, it is more likely that adult doses translate into paediatric doses only by virtue of the differences in self-limiting pulmonary deposition when using the same absolute nominal doses of the medication. Adapting the adult dose to a paediatric dose calculated on body size might be unnecessary and could lead to insufficient pulmonary deposition of medication. These findings suggest that dosage regimens for inhalation therapy for children may have to be reconsidered, and should be determined from dose-ranging studies rather than calculated from adult doses based on body size. [source] Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrumMOLECULAR ECOLOGY, Issue 19 2010J.-B. LEDOUX Abstract Identifying microevolutionary processes acting in populations of marine species with larval dispersal is a challenging but crucial task because of its conservation implications. In this context, recent improvements in the study of spatial genetic structure (SGS) are particularly promising because they allow accurate insights into the demographic and evolutionary processes at stake. Using an exhaustive sampling and a combination of image processing and population genetics, we highlighted significant SGS between colonies of Corallium rubrum over an area of half a square metre, which sheds light on a number of aspects of its population biology. Based on this SGS, we found the mean dispersal range within sites to be between 22.6 and 32.1 cm, suggesting that the surveyed area approximately corresponded to a breeding unit. We then conducted a kinship analysis, which revealed a complex half-sib family structure and allowed us to quantify the level of self-recruitment and to characterize aspects of the mating system of this species. Furthermore, significant temporal variations in allele frequencies were observed, suggesting low genetic drift. These results have important conservation implications for the red coral and further our understanding of the microevolutionary processes acting within populations of sessile marine species with a larval phase. [source] Field trial of serially passaged isolates of BYDV-PAV overcoming resistance derived from Thinopyrum intermedium in wheatPLANT BREEDING, Issue 3 2006F. Chain Abstract Barley yellow dwarf disease (BYDD) is one of the main viral diseases of small grain cereals. This disease, reported on numerous plant species of the Poaceae family, is caused by a complex of viral species including the species Barley yellow dwarf virus -PAV (BYDV-PAV, family Luteoviridae, genus Luteovirus), frequently found in western Europe. Resistance sources towards BYDD are scarce. Indeed, breeding-resistant genotypes is a long and expensive process. Thus, estimating the durability of the resistance genes before the achievement of selection would be an asset for breeders. One isolate of BYDV-PAV has been serially passaged on two hosts, ,Zhong ZH' and ,TC14', carrying a gene for partial resistance. The resulting viral population showed an increase of the speed of development of the infection in controlled conditions. In this study, these viral populations were evaluated in a 3-year field trial, including a susceptible host, ,Rendezvous', and a host carrying the resistance gene of ,TC14' in a ,Rendezvous' background, to assess the effect of serial passages in field conditions. Results indicate that isolates issued from serial passages on hosts carrying a gene for partial resistance induced increased damage in field conditions when compared with the initial isolate. Yield losses are mainly due to a decrease of the number of kernels per square metre. The interest on using partial resistance gene to control BYDD is discussed. [source] Reproductive potential and seedling establishment of the invasive alien tree Schinus molle (Anacardiaceae) in South AfricaAUSTRAL ECOLOGY, Issue 6 2009DONALD M. IPONGA Abstract Schinus molle (Peruvian pepper tree) was introduced to South Africa more than 150 years ago and was widely planted, mainly along roads. Only in the last two decades has the species become naturalized and invasive in some parts of its new range, notably in semi-arid savannas. Research is being undertaken to predict its potential for further invasion in South Africa. We studied production, dispersal and predation of seeds, seed banks, and seedling establishment in relation to land uses at three sites, namely ungrazed savanna once used as a military training ground; a savanna grazed by native game; and an ungrazed mine dump. We found that seed production and seed rain density of S. molle varied greatly between study sites, but was high at all sites (384 864,1 233 690 seeds per tree per year; 3877,9477 seeds per square metre per year). We found seeds dispersed to distances of up to 320 m from female trees, and most seeds were deposited within 50 m of putative source trees. Annual seed rain density below canopies of Acacia tortillis, the dominant native tree at all sites, was significantly lower in grazed savanna. The quality of seed rain was much reduced by endophagous predators. Seed survival in the soil was low, with no survival recorded beyond 1 year. Propagule pressure to drive the rate of recruitment: densities of seedlings and sapling densities were higher in ungrazed savanna and the ungrazed mine dump than in grazed savanna, as reflected by large numbers of young individuals, but adult : seedling ratios did not differ between savanna sites. Frequent and abundant seed production, together with effective dispersal of viable S. molle seed by birds to suitable establishment sites below trees of other species to overcome predation effects, facilitates invasion. Disturbance enhances invasion, probably by reducing competition from native plants. [source] Effects of the El Niño southern oscillation on Turbo torquatus (Gastropoda) and their kelp habitatAUSTRAL ECOLOGY, Issue 5 2008PIERS ETTINGER-EPSTEIN Abstract Turbo torquatus (hereafter Turbo) were abundant and patchily distributed, especially in algal dominated habitats in shallow water (less then 10 metres) on rocky reefs in central New South Wales, Australia. Although the assemblage of algae was similar in barrens with and without crevices, Turbo were most abundant in crevices, suggesting that shelter was important. Experimental removal of the kelp canopy resulted in a great decrease in the number of Turbo. This was despite cleared patches containing more filamentous food algae, further highlighting the importance of shelter. The density of Turbo in kelp forests ranged from six to seven per square metre in times of abundance and less then one per square metre at other times over a 12-year period. Variation in the resource base (i.e. food algae and kelp cover) was strongly linked to the abundance of Turbo. Abundance of Turbo was lowest when the density of adult kelp was low (less than 14 plants per square metre). The condition of kelp was severely affected during the 1997,1998 and 2002 El Niño events and was compromised 2,4 years after each event. These pulse events and related loss of shelter probably contributed to a decline in abundance of Turbo. This model was further supported when Turbo abundance increased with a subsequent increase in the density of kelp. [source] Ecological contrasts across an Antarctic land,sea interfaceAUSTRAL ECOLOGY, Issue 5 2006CATHERINE L. WALLER Abstract We report the composition of terrestrial, intertidal and shallow sublittoral faunal communities at sites around Rothera Research Station, Adelaide Island, Antarctic Peninsula. We examined primary hypotheses that the marine environment will have considerably higher species richness, biomass and abundance than the terrestrial, and that both will be greater than that found in the intertidal. We also compared ages and sizes of individuals of selected marine taxa between intertidal and subtidal zones to test the hypothesis that animals in a more stressed environment (intertidal) would be smaller and shorter lived. Species richness of intertidal and subtidal communities was found to be similar, with considerable overlap in composition. However, terrestrial communities showed no overlap with the intertidal, differing from previous reports, particularly from further north on the Antarctic Peninsula and Scotia Arc. Faunal biomass was variable but highest in the sublittoral. While terrestrial communities were depauperate with low biomass they displayed the highest overall abundance, with a mean of over 3 × 105 individuals per square metre. No significant differences in ages of intertidal and subtidal individuals of the same species were found, with bryozoan colonies of up to 4 years of age being present in the intertidal. In contrast with expectation and the limited existing literature we conclude that, while the Antarctic intertidal zone is clearly a suboptimal and highly stressful habitat, its faunal community can be well established and relatively diverse, and is not limited to short-term opportunists or waifs and strays. [source] A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black SeaENVIRONMENTAL MICROBIOLOGY, Issue 8 2008Martin Krüger Summary A novel microbially diverse type of 1- to 5-cm-thick mat performing anaerobic oxidation of methane (AOM) and covering several square metres of the seafloor was discovered in the Black Sea at 180 m water depth. Contrary to other AOM-mat systems of the Black Sea these floating mats are not associated to free gas and are not stabilized by authigenic carbonates. However, supply of methane is ensured by the horizontal orientation of the mats acting as a cover of methane enriched fluids ascending from the underlying sediments. Thorough investigation of their community composition by molecular microbiology and lipid biomarkers, metabolic activities and elemental composition showed that the mats provide a clearly structured system with extracellular polymeric substances (EPS) building the framework of the mats. The top black zone, showing high rates of AOM (15 ,mol gdw,1 day,1), was dominated by ANME-2, while the following equally active pink layer was dominated by ANME-1 Archaea. The lowest AOM activity (2 ,mol gdw,1 day,1) and cell numbers were found in the greyish middle part delimited towards the sediment by a second pink, ANME-1-dominated and sometimes a black outer layer (ANME-2). Our work clearly shows that the different microbial populations are established along defined chemical gradients such as methane, sulfate or sulfide. [source] |