Home About us Contact | |||
Spots Corresponding (spot + corresponding)
Selected AbstractsComparative proteomic analysis of primary mouse liver c-Kit,(CD45/TER119), stem/progenitor cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2007Yu-Fei He Abstract Liver stem/progenitor cells play a key role in liver development and maybe also in liver cancer development. In our previous study a population of c-Kit,(CD45/TER119), liver stem/progenitor cells in mouse fetal liver, was successfully sorted with large amount (106,107) by using immuno-magnetic microbeads. In this study, the sorted liver stem/progenitor cells were used for proteomic study. Proteins of the sorted liver stem/progenitor cells and unsorted fetal liver cells were investigated using two-dimensional electrophoresis. A two-dimensional proteome map of liver stem/progenitor cells was obtained for the first time. Proteins that exhibited significantly upregulation in liver stem/progenitor cells were identified by peptide mass fingerprinting and peptide sequencing. Nineteen protein spots corresponding to 12 different proteins were identified as showing significant upregulation in liver stem/progenitor cells and seem to play important roles in such cells in cell metabolism, cell cycle regulation, and stress. An interesting finding is that most of the upregulated proteins were overexpressed in various cancers (11 of 12, including 6 in human hepatocellular carcinoma (HCC)) and involved in cancer development as reported in previous studies. Some of the identified proteins were validated by real-time PCR, Western blotting, and immunostaining. Taken together, the data presented provide a significant new protein-level insight into the biology of liver stem/progenitor cells, a key population of cells that might be also involved in liver cancer development. J. Cell. Biochem. 102: 936,946, 2007. © 2007 Wiley-Liss, Inc. [source] Establishment of a two-dimensional electrophoresis map for Neospora caninum tachyzoites by proteomicsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2003Eung Goo Lee Abstract Expressed proteins and antigens from Neospora caninum tachyzoites were studied by two-dimensional gel electrophoresis and immunoblot analysis combined with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Thirty-one spots corresponding to 20 different proteins were identified from N. caninum tachyzoites by peptide mass fingerprinting. Six proteins were identified from a N. caninum database (NTPase, 14-3-3 protein homologue, NcMIC1, NCDG1, NcGRA1 and NcGRA2), and 11 proteins were identified in closely related species using the T. gondii database (HSP70, HSP60, pyruvate kinase, tubulin ,- and ,-chain, putative protein disulfide isomerase, enolase, actin, fructose-1,6-bisphosphatase, lactate dehydrogenase and glyceradehyde-3-phosphate dehydrogenase). One hundred and two antigen spots were observed using pH 4,7 IPG strips on immunoblot profiles. Among them, 17 spots corresponding to 11 antigenic proteins were identified from a N. caninum protein map. This study involved the construction of in-depth protein maps for N. caninum tachyzoites, which will be of value for studies of its pathogenesis, drug and vaccine development, and phylogenetic studies. [source] Proteomic investigation of the effects of weight loss in the gastrocnemius muscle of wild and NZW rabbits via 2D-electrophoresis and MALDI-TOF MSANIMAL GENETICS, Issue 3 2010A. M. Almeida Summary The study of changes within the key agents regulating metabolism during genetic upgrading because of selection can contribute to an improved understanding of genomic and physiological relationships. This may lead to increased efficiencies in animal production. These changes, regarding energy and protein metabolic saving mechanisms, can be highlighted during food restriction periods. In this study, a 20% weight reduction was induced in two rabbit breeds: New Zealand white, a selected meat producer (Oryctolagus cuniculus cuniculus), and Iberian wild rabbit (Oryctolagus cuniculus algirus), with the aim of determining differential protein expression in the gastrocnemius muscle within control (ad libitum) and restricted diet experimental animal groups, using techniques of two-dimensional gel electrophoresis and peptide mass fingerprinting. Results show that l -lactate dehydrogenase, adenylate kinase, , enolase and , enolase, fructose bisphosphate aldolase A and glyceraldehyde 3-phosphate dehydrogenase, which are enzymes involved in energy metabolism, are differentially expressed in restricted diet experimental animal groups. These enzymes are available to be further tested as relevant biomarkers of weight loss and putative objects of manipulation as a selection tool towards increasing tolerance to weight loss. Similar reasoning could be applied to 2D gel electrophoresis spots corresponding to the important structural proteins tropomyosin , chain and troponin I. Finally, a spot identified as mitochondrial import stimulation factor seems of special interest as a marker of undernutrition, and it may be the object of further studies aiming to better understand its physiological role. [source] Comparative proteomic analysis between normal skin and keloid scarBRITISH JOURNAL OF DERMATOLOGY, Issue 6 2010C.T. Ong Summary Background, Keloids are pathological scars and, despite numerous available treatment modalities, continue to plague physicians and patients. Objectives, Identification of molecular mediators that contribute to this fibrotic phenotype. Methods, Two-dimensional gel electrophoresis, MALDI-TOF, Mascot online database searching algorithm and Melanie 5 gel analysis software were employed for comparative proteomic analysis between normal skin (NS) and keloid scar (KS) tissue extracts. Results, Seventy-nine protein spots corresponding to 23 and 32 differentially expressed proteins were identified in NS and KS, respectively. Isoforms of heat shock proteins, gelsolin, carbonic anhydrase and notably keratin 10 were strongly expressed in NS along with manganese superoxide dismutase, immune components, antitrypsin, prostatic binding protein and crystalline. Various classes of proteins were found either to be present or to be upregulated in keloid tissue: (i) inflammatory/differentiated keratinocyte markers: S100 proteins, peroxiredoxin I; (ii) wound healing proteins: gelsolin-like capping protein; (iii) fibrogenetic proteins: mast cell ,-tryptase, macrophage migration inhibitory factor (MIF); (iv) antifibrotic proteins: asporin; (v) tumour suppressor proteins: stratifin, galectin-1, maspin; and (vi) antiangiogenic proteins: pigment epithelium-derived factor. Significant increases in expression of asporin, stratifin, galectin-1 and MIF were observed by Western blot analysis in KS. Conclusions, This work has identified differentially expressed proteins specific to KS tissue extracts which can potentially be used as specific targets for therapeutic intervention. [source] |