Spitzer Space Telescope (spitzer + space_telescope)

Distribution by Scientific Domains


Selected Abstracts


A shallow though extensive H2 2.122-,m imaging survey of Taurus,Auriga,Perseus , I. NGC 1333, L1455, L1448 and B1

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
C. J. Davis
ABSTRACT We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus,Auriga,Perseus complex. These H2 2.122-,m observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope, and published submillimetre CO J= 3,2 maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig,Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of ,, 1.4) as well as red IRAC 3.6,4.5 ,m and IRAC/MIPS 4.5,24.0 ,m colours: 80 per cent have [3.6],[4.5] > 1.0 and [4.5],[24] > 1.5. These criteria , high , and red [4.5],[24] and [3.6],[4.5] colours , are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between , and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region. [source]


Spitzer observations of M83 and the hot star, H ii region connection

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
Robert H. Rubin
ABSTRACT We have undertaken a programme to observe emission lines of [S iv] 10.51, [Ne ii] 12.81, [Ne iii] 15.56, and [S iii] 18.71 ,m in a number of extragalactic H ii regions with the Spitzer Space Telescope. Here we report our results for the nearly face-on spiral galaxy M83. A subsequent paper will present our data and analysis for another substantially face-on spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (RG). The observations were made with the infrared spectrograph in the short wavelength, high dispersion configuration. The above set of four lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++ and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger RG. By sampling the dominant ionization states of Ne and S for H ii regions, we can approximate the Ne/S ratio by (Ne++ Ne++)/(S+++ S3+). Our findings of ratios that significantly exceed the benchmark Orion Nebula value, as well as a decrease in this ratio with increasing RG, are more likely due to other effects than a true gradient in Ne/S. Two effects that will tend to lower these high estimates and to flatten the gradient are first, the method does not account for the presence of S+ and second, S but not Ne is incorporated into grains. Both Ne and S are primary elements produced in ,-chain reactions, following C and O burning in stars, making their yields depend very little on the stellar metallicity. Thus, it is expected that Ne/S remains relatively constant throughout a galaxy. We stress that this type of observation and method of analysis does have the potential for accurate measurements of Ne/S, particularly for H ii regions that have lower metallicity and higher ionization than those here, such as those in M33. Our observations may also be used to test the predicted ionizing spectral energy distribution (SED) of various stellar atmosphere models. We compare the ratio of fractional ionizations ,Ne++,/,S++, and ,Ne++,/,S3+, versus ,S3+,/,S++, with predictions made from our photoionization models using several of the state-of-the-art stellar atmosphere model grids. The overall best fit appears to be the nebular models using the supergiant stellar atmosphere models of Pauldrach, Hoffmann & Lennon and Sternberg, Hoffmann & Pauldrach. This result is not sensitive to the electron density and temperature range expected for these M83 nebulae. Considerable computational effort has gone into the comparison between data and models, although not all parameter studies have yet been performed on an ultimate level (e.g. in the present paper the stellar atmosphere model abundances have been fixed to solar values). A future paper, with the benefit of more observational data, will continue these studies to further discriminate how the ionic ratios depend on the SED and the other nebular parameters. [source]


A highly obscured and strongly clustered galaxy population discovered with the Spitzer Space Telescope

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
M. Magliocchetti
ABSTRACT The ,800 optically unseen (R > 25.5) 24-,m selected sources in the complete Spitzer First Look Survey sample with F24 ,m, 0.35 mJy are found to be very strongly clustered. If, as indicated by several lines of circumstantial evidence, they are ultraluminous far-infrared galaxies at z, 1.6,2.7, the amplitude of their spatial correlation function is very high. The associated comoving clustering length is estimated to be r0= 14.0+2.1,2.4 Mpc, value which puts these sources amongst the most strongly clustered populations of our known Universe. Their 8,24 ,m colours suggest that the active galactic nucleus contribution dominates above F24 ,m, 0.8 mJy, consistent with earlier analyses. The properties of these objects (number counts, redshift distribution, clustering amplitude) are fully consistent with those of proto-spheroidal galaxies in the process of forming most of their stars and of growing their active nucleus, as described by the Granato et al. model. In particular, the inferred space density of such galaxies at z, 2 is much higher than what is expected from most semi-analytic models. Matches of the observed projected correlation function w(,) with models derived within the so-called halo occupation scenario show that these sources have to be hosted by haloes more massive than ,1013.4 M,. This value is significantly higher than that for the typical galactic haloes hosting massive elliptical galaxies, suggesting a duration of the starburst phase of massive high-redshift dusty galaxies of TB, 0.5 Gyr. [source]


The stellar mass density at z, 6 from Spitzer imaging of i,-drop galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007
Laurence P. Eyles
ABSTRACT We measure the ages, stellar masses, and star formation histories of z, 6 galaxies, observed within 1 Gyr of the big bang. We use imaging from the Hubble Space Telescope (HST) and the Spitzer Space Telescope from the public ,Great Observatories Origins Deep Survey' (GOODS), coupled with ground-based near-infrared imaging, to measure their spectral energy distributions (SEDs) from 0.8,5 ,m, spanning the rest-frame ultraviolet (UV) and optical. From our sample of ,50 ,i,-drop' Lyman-break star-forming galaxies in GOODS-South with z,AB < 27, we focus on ,30 with reliable photometric or spectroscopic redshifts. Half of these are confused with foreground sources at Spitzer resolution, but from the 16 with clean photometry we find that a surprisingly large fraction (40 per cent) have evidence for substantial Balmer/4000-Å spectral breaks. This indicates the presence of old underlying stellar populations that dominate the stellar masses. For these objects, we find ages of ,200,700 Myr, implying formation redshifts of 7 ,zf, 18, and large stellar masses in the range ,1,3 × 1010 M,. Analysis of seven i,-drops that are undetected at 3.6 ,m indicates that these are younger, considerably less massive systems. We calculate that emission line contamination should not severely affect our photometry or derived results. Using SED fits out to 8 ,m, we find little evidence for substantial intrinsic dust reddening in our sources. We use our individual galaxy results to obtain an estimate of the global stellar mass density at z, 6. Correcting for incompleteness in our sample, we find the z, 6 comoving stellar mass density to be 2.5 × 106 M, Mpc,3. This is a lower limit, as post-starburst and dust-obscured objects, and also galaxies below our selection thresholds, are not accounted for. From our results, we are able to explore the star formation histories of our selected galaxies, and we suggest that the past global star formation rate may have been much higher than that observed at the z, 6 epoch. The associated UV flux we infer at z > 7 could have played a major role in reionizing the Universe. [source]


Productivity and impact of astronomical facilities: A recent sample

ASTRONOMISCHE NACHRICHTEN, Issue 3 2010
V. Trimble
Abstract The papers published in 11 key astronomical journals in 2008, and a year of citations to those from the first half of the year, have been associated with the telescopes, satellites, and so forth where the data were gathered using a form of fractional counting. Some numbers are also given by journal, by subfield, and by wavelength band. The largest numbers of papers, and generally also quite highly cited ones, in their respective wavelength bands come from the Very Large Array, the Hubble Space Telescope, the Sloan Digital Sky Survey, the Spitzer Space Telescope, and the Chandra X-ray Telescope. Optical astronomy is still the largest sector; and papers about cosmology and exoplanets are cited more often than papers about binary stars and planetary nebulae. The authors conclude that it is of equal importance to recognize (a) that a very large number of papers also come from less famous facilities, (b) that a very large fraction of papers (and their authors) are concerned with the less highly-cited topics, (c) that many facilities are quite slow in achieving their eventual level of influence, and (d) that one really needs at least three years of citation data, not just one or two, to provide a fair picture of what is going on (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]