Spinner Dolphins (spinner + dolphin)

Distribution by Scientific Domains


Selected Abstracts


SEXUAL ECOLOGY OF THE SPINNER DOLPHIN, STENELLA LONGIROSTRIS: GEOGRAPHIC VARIATION IN MATING SYSTEM

MARINE MAMMAL SCIENCE, Issue 3 2003
William F. Perrin
Abstract We offer the first report for a cetacean of geographical variation in mating system based in morphology. Analysis of samples from 1,678 male spinner dolphins from the eastern Pacific revealed that testis + epididymis weight was greater (to 1,354 g) in the whitebelly form of the species than in the eastern form (to 843 g). Sexual dimorphism in dorsal-fin shape is greater in the eastern form. The difference in testis size was strongly linked with shape of the dorsal fin on an individual basis. Only a few eastern males (0.6%) reached testis + epididymis weight at which all epididymides contain sperm, while a much larger proportion of whitebelly spinners (15.2%) reached this level, suggesting that a smaller proportion of eastern spinner males may participate in reproductive activity. This, and the fact that increased dimorphism and decreased testis size are indicative of increased polygyny in a wide variety of other mammal species, leads to the conclusion that the mating system varies geographically in the species, with a gradient from a more polygynous mating system in the eastern form to a more open or polygynandrous mating system in the whitebelly form. Differences in ovulation rate in the two forms are consistent with this conclusion. [source]


A Morphological and Histological Examination of the Pan-tropical Spotted Dolphin (Stenella attenuata) and the Spinner Dolphin (Stenella longirostris) Adrenal Gland

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2008
L. S. Clark
Summary The morphology and histology of the cetacean adrenal gland are poorly understood. Therefore, this study examined 32 pairs of adrenal glands from 18 pan-tropical spotted dolphins (Stenella attenuata) and 14 spinner dolphins (Stenella longirostris). In both species, the cortex was pseudolobulated and contained a typical mammalian zonation. Medullary protrusions (0,3 per section) and a medullary band were identified in both species. For S. attenuata, no statistical differences were found in the cortex to medulla (CM) ratio or the percent cross-sectional area (PCA) of the adrenal glands compared with sex or sexual maturity. The mean CM ratio for S. attenuata was 2.34 and the PCA was 64.4% cortex, 29.4% medulla and 6.2%,other'. ,Other' indicates blood vessels, connective tissue and the gland capsule itself. For S. longirostris, there was no statistical difference in the CM ratio compared with sexual maturity. However, a statistical difference was found between the CM ratio and sex, suggesting sexual dimorphism (female CM ratio = 2.46 and males = 3.21). No statistical differences were found in the PCA of S. longirostris adrenal glands by sexual maturity. However, a statistical difference was found between the PCA by sex. Female S. longirostris adrenal glands consisted of 65.0% cortex, 27.3% medulla and 7.7%,other', whereas male adrenal glands consisted of 71.7% cortex, 22.7% medulla and 5.6%,other'. [source]


Rolling stones and stable homes: social structure, habitat diversity and population genetics of the Hawaiian spinner dolphin (Stenella longirostris)

MOLECULAR ECOLOGY, Issue 4 2010
KIMBERLY R. ANDREWS
Abstract Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever-changing membership, but in the low carbonate atolls in the NW archipelago they form long-term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F -statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ,ST < 0.001, P = 0.357; microsatellite FST = ,0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai'i) has the lowest gene flow (mtDNA 0.042 < ,ST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai'i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely-related populations. [source]


Circadian and seasonal rhythms in the behavior of spinner dolphins (Stenella longirostris)

MARINE MAMMAL SCIENCE, Issue 1 2009
Flávio José de Lima Silva
Abstract The present study investigated both circadian and seasonal fluctuations in the daytime activities of the spinner dolphin, Stenella longirostris, from the Fernando de Noronha Archipelago in Brazil. The number of dolphins, and aerial, and reproductive activities were documented. The observations were carried out from January 1997 to December 2001. Temporal series and rhythmic characteristics (mesor, rhythmic percentage, and acrophase) were obtained by COSINOR analysis and later compared. The dolphins entered the bay in the morning, displayed aerial and reproductive activities during daytime, and left the bay in late afternoon to the open ocean. This study indicated that the rainy season affected the three behaviors investigated decreasing the rhythms parameter and advancing the beginning of these activities. The number of individuals was higher during the dry season and the animals stayed longer inside the bay. During the dry season, there was a bimodal expression of aerial activity, expressing a longer use of the temporal niche than in the rainy season. The phases with high frequencies of aerial activity seemed associated with those showing high reproductive activity, both with peak frequencies at about 0800. The results represent an important contribution to the advancement of chronobiological studies, and to the biology of cetaceans, considering that the existence of circadian and seasonal rhythms was proven in the behavior of spinner dolphins in an area of the SW Atlantic. Moreover, it allows restricting periods of the day for the activities of tourism as a form of minimizing the impacts of the boats on the dolphins. [source]


Rolling stones and stable homes: social structure, habitat diversity and population genetics of the Hawaiian spinner dolphin (Stenella longirostris)

MOLECULAR ECOLOGY, Issue 4 2010
KIMBERLY R. ANDREWS
Abstract Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever-changing membership, but in the low carbonate atolls in the NW archipelago they form long-term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F -statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ,ST < 0.001, P = 0.357; microsatellite FST = ,0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai'i) has the lowest gene flow (mtDNA 0.042 < ,ST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai'i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely-related populations. [source]


Effects of vessels and swimmers on behavior of Hawaiian spinner dolphins (Stenella longirostris) in Kealake,akua, Honaunau, and Kauhako bays, Hawai,i

MARINE MAMMAL SCIENCE, Issue 2 2009
Sarah Courbis
First page of article [source]


Circadian and seasonal rhythms in the behavior of spinner dolphins (Stenella longirostris)

MARINE MAMMAL SCIENCE, Issue 1 2009
Flávio José de Lima Silva
Abstract The present study investigated both circadian and seasonal fluctuations in the daytime activities of the spinner dolphin, Stenella longirostris, from the Fernando de Noronha Archipelago in Brazil. The number of dolphins, and aerial, and reproductive activities were documented. The observations were carried out from January 1997 to December 2001. Temporal series and rhythmic characteristics (mesor, rhythmic percentage, and acrophase) were obtained by COSINOR analysis and later compared. The dolphins entered the bay in the morning, displayed aerial and reproductive activities during daytime, and left the bay in late afternoon to the open ocean. This study indicated that the rainy season affected the three behaviors investigated decreasing the rhythms parameter and advancing the beginning of these activities. The number of individuals was higher during the dry season and the animals stayed longer inside the bay. During the dry season, there was a bimodal expression of aerial activity, expressing a longer use of the temporal niche than in the rainy season. The phases with high frequencies of aerial activity seemed associated with those showing high reproductive activity, both with peak frequencies at about 0800. The results represent an important contribution to the advancement of chronobiological studies, and to the biology of cetaceans, considering that the existence of circadian and seasonal rhythms was proven in the behavior of spinner dolphins in an area of the SW Atlantic. Moreover, it allows restricting periods of the day for the activities of tourism as a form of minimizing the impacts of the boats on the dolphins. [source]


SEXUAL ECOLOGY OF THE SPINNER DOLPHIN, STENELLA LONGIROSTRIS: GEOGRAPHIC VARIATION IN MATING SYSTEM

MARINE MAMMAL SCIENCE, Issue 3 2003
William F. Perrin
Abstract We offer the first report for a cetacean of geographical variation in mating system based in morphology. Analysis of samples from 1,678 male spinner dolphins from the eastern Pacific revealed that testis + epididymis weight was greater (to 1,354 g) in the whitebelly form of the species than in the eastern form (to 843 g). Sexual dimorphism in dorsal-fin shape is greater in the eastern form. The difference in testis size was strongly linked with shape of the dorsal fin on an individual basis. Only a few eastern males (0.6%) reached testis + epididymis weight at which all epididymides contain sperm, while a much larger proportion of whitebelly spinners (15.2%) reached this level, suggesting that a smaller proportion of eastern spinner males may participate in reproductive activity. This, and the fact that increased dimorphism and decreased testis size are indicative of increased polygyny in a wide variety of other mammal species, leads to the conclusion that the mating system varies geographically in the species, with a gradient from a more polygynous mating system in the eastern form to a more open or polygynandrous mating system in the whitebelly form. Differences in ovulation rate in the two forms are consistent with this conclusion. [source]


Rolling stones and stable homes: social structure, habitat diversity and population genetics of the Hawaiian spinner dolphin (Stenella longirostris)

MOLECULAR ECOLOGY, Issue 4 2010
KIMBERLY R. ANDREWS
Abstract Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever-changing membership, but in the low carbonate atolls in the NW archipelago they form long-term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F -statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ,ST < 0.001, P = 0.357; microsatellite FST = ,0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai'i) has the lowest gene flow (mtDNA 0.042 < ,ST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai'i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely-related populations. [source]


A Morphological and Histological Examination of the Pan-tropical Spotted Dolphin (Stenella attenuata) and the Spinner Dolphin (Stenella longirostris) Adrenal Gland

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2008
L. S. Clark
Summary The morphology and histology of the cetacean adrenal gland are poorly understood. Therefore, this study examined 32 pairs of adrenal glands from 18 pan-tropical spotted dolphins (Stenella attenuata) and 14 spinner dolphins (Stenella longirostris). In both species, the cortex was pseudolobulated and contained a typical mammalian zonation. Medullary protrusions (0,3 per section) and a medullary band were identified in both species. For S. attenuata, no statistical differences were found in the cortex to medulla (CM) ratio or the percent cross-sectional area (PCA) of the adrenal glands compared with sex or sexual maturity. The mean CM ratio for S. attenuata was 2.34 and the PCA was 64.4% cortex, 29.4% medulla and 6.2%,other'. ,Other' indicates blood vessels, connective tissue and the gland capsule itself. For S. longirostris, there was no statistical difference in the CM ratio compared with sexual maturity. However, a statistical difference was found between the CM ratio and sex, suggesting sexual dimorphism (female CM ratio = 2.46 and males = 3.21). No statistical differences were found in the PCA of S. longirostris adrenal glands by sexual maturity. However, a statistical difference was found between the PCA by sex. Female S. longirostris adrenal glands consisted of 65.0% cortex, 27.3% medulla and 7.7%,other', whereas male adrenal glands consisted of 71.7% cortex, 22.7% medulla and 5.6%,other'. [source]