Spine Synapses (spine + synapsis)

Distribution by Scientific Domains


Selected Abstracts


Splice-isoform specific immunolocalization of neuronal nitric oxide synthase in mouse and rat brain reveals that the PDZ-complex-building nNOS, ,-finger is largely exposed to antibodies

DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2007
Kristina Langnaese
Abstract Knock out mice deficient for the splice-isoform ,, of neuronal nitric oxide synthase (nNOS,,) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, ,, and ,,, we generated isoform-specific anti-peptide antibodies against the nNOS,, specific ,,-finger motif involved in PDZ domain scaffolding and the nNOS,, specific N-terminus. The nNOS,, ,,-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOS,, on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the ,,-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOS,, ,,-finger antibody in pull-down assays. By contrast, nNOS,, ,,-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOS,, knock out mice, nNOS,, was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting ,,/,,-isoforms in these cells. The nNOS,, antibody clearly detected bacterial expressed nNOS,, fusion protein and nNOS,, in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOS,, in nNOS,, deficient animals. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005
Henrike Neuhoff
Abstract Morphological changes at synaptic specializations have been implicated in regulating synaptic strength. Actin turnover at dendritic spines is regulated by neuronal activity and contributes to spine size, shape and motility. The reorganization of actin filaments requires profilins, which stimulate actin polymerization. Neurons express two independent gene products , profilin I and profilin II. A role for profilin II in activity-dependent mechanisms at spine synapses has recently been described. Although profilin I interacts with synaptic proteins, little is known about its cellular and subcellular localization in neurons. Here, we investigated the subcellular distribution of this protein in brain neurons as well as in hippocampal cultures. Our results indicate that the expression of profilin I varies in different brain regions. Thus, in cerebral cortex and hippocampus profilin I immunostaining was associated predominantly with dendrites and was present in a subset of dendritic spines. In contrast, profilin I in cerebellum was associated primarily with presynaptic structures. Profilin I immunoreactivity was partially colocalized with the synaptic molecules synaptophysin, PSD-95 and gephyrin in cultured hippocampal neurons, indicating that profilin I is present in only a subset of synapses. At dendritic spine structures, profilin I was found primarily in protrusions, which were in apposition to presynaptic terminal boutons. Remarkably, depolarization with KCl caused a moderate but significant increase in the number of synapses containing profilin I. These results show that profilin I can be present at both pre- and postsynaptic sites and suggest a role for this actin-binding protein in activity-dependent remodelling of synaptic structure. [source]


Hormonal enhancement of neuronal firing is linked to structural remodelling of excitatory and inhibitory synapses

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2002
A. Parducz
Abstract The ovarian hormone estradiol induces morphological changes in the number of synaptic inputs in specific neuronal populations. However, the functional significance of these changes is still unclear. In this study, the effect of estradiol on the number of anatomically identified synaptic inputs has been assessed in the hypothalamic arcuate nucleus. The number of axo-somatic, axodendritic and spine synapses was evaluted using unbiased stereological methods and a parallel electrophysiological study was performed to assess whether synaptic anatomical remodelling has a functional consequence on the activity of the affected neurons. Estradiol administration to ovariectomized rats induced a decrease in the number of inhibitory synaptic inputs, an increase in the number of excitatory synapses and an enhancement of the frequency of neuronal firing. These results indicate that oestrogen modifications in firing frequency in arcuate neurons are temporally linked to anatomical modifications in the numerical balance of inhibitory and excitatory synaptic inputs. [source]


Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus

HIPPOCAMPUS, Issue 8 2009
Lars Fester
Abstract Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354,1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area. To this end, we treated hippocampal cultures with cholesterol, estradiol, or with letrozole, a potent aromatase inhibitor. Cholesterol increased neuronal estradiol release into the medium, the number of spine synapses in hippocampal slice cultures, and immunoreactivity of synaptic proteins in dispersed cultures. Simultaneous application of cholesterol and letrozole or blockade of estrogen receptors by ICI 182 780 abolished cholesterol-induced synapse formation. As a further approach, we inhibited the access of cholesterol to the first enzyme of steroidogenesis by knock-down of steroidogenic acute regulatory protein, the rate-limiting step in steroidogenesis. A rescue of reduced synaptic protein expression in transfected cells was achieved by estradiol but not by cholesterol. Our data indicate that in the hippocampus cholesterol-promoted synapse formation requires the conversion of cholesterol to estradiol. © 2009 Wiley-Liss, Inc. [source]


Changes in rat hippocampal CA1 synapses following imipramine treatment

HIPPOCAMPUS, Issue 7 2008
Fenghua Chen
Abstract Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling of synapses) in subregions of the hippocampus by quantifying number of neurons and synapses. Adult male Sprague-Dawley rats were injected with imipramine or saline (i.p.) daily for 14 days. Unbiased stereological methods were used to quantify the number of neurons and synapses. No differences in the volume and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our results indicate that administration of imipramine for 14 days in normal rats could significantly increase the excitatory spine synapses, and change the relative distribution of spine and shaft synapses. We speculate that the present findings may be explained by the establishment of new synaptic connections and by remodelling or transformation of existing synapses. © 2008 Wiley-Liss, Inc. [source]


Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses

HIPPOCAMPUS, Issue 10 2006
Tatiana Kovalenko
Abstract Relatively mild ischemic episode can initiate a chain of events resulting in delayed cell death and significant lesions in the affected brain regions. We studied early synaptic modifications after brief ischemia modeled in rats by transient vessels' occlusion in vivo or oxygen,glucose deprivation in vitro and resulting in delayed death of hippocampal CA1 pyramidal cells. Electron microscopic analysis of excitatory spine synapses in CA1 stratum radiatum revealed a rapid increase of the postsynaptic density (PSD) thickness and length, as well as formation of concave synapses with perforated PSD during the first 24 h after ischemic episode, followed at the long term by degeneration of 80% of synaptic contacts. In presynaptic terminals, ischemia induced a depletion of synaptic vesicles and changes in their spatial arrangement: they became more distant from active zones and had larger intervesicle spacing compared to controls. These rapid structural synaptic changes could be implicated in the mechanisms of cell death or adaptive plasticity. Comparison of the in vivo and in vitro model systems used in the study demonstrated a general similarity of these early morphological changes, confirming the validity of the in vitro model for studying synaptic structural plasticity. © 2006 Wiley-Liss, Inc. [source]