Spindle Morphology (spindle + morphology)

Distribution by Scientific Domains


Selected Abstracts


Spindle pole fragmentation due to proteasome inhibition

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
Anka G. Ehrhardt
During interphase, the centrosome concentrates cell stress response molecules, including chaperones and proteasomes, into a proteolytic center. However, whether the centrosome functions as proteolytic center during mitosis is not known. In this study, cultured mammalian cells were treated with the proteasome inhibitor MG 132 and spindle morphology in mitotic cells was characterized in order to address this issue. Proteasome inhibition during mitosis leads to the formation of additional asters that cause the assembly of multipolar spindles. The cause of this phenomenon was investigated by inhibiting microtubule-based transport and protein synthesis. These experimental conditions prevented the formation of supernumerary asters during mitosis. In addition, the expression of dsRed without proteasome inhibition led to the fragmentation of spindle poles. These experiments showed that the formation of extra asters depends on intact microtubule-based transport and protein synthesis. These results suggest that formation of supernumerary asters is due to excessive accumulation of proteins at the spindle poles and consequently fragmentation of the centrosome. Together, this leads to the conclusion that the centrosome functions as proteolytic center during mitosis and proteolytic activity at the spindle poles is necessary for maintaining spindle pole integrity. © 2005 Wiley-Liss, Inc. [source]


Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 8 2008
Roser Morató
Abstract Our objective was to document potential subcellular consequences of treatment with the microtubule stabilizer Taxol with or without subsequent vitrification of cow and calf oocytes by the open pulled straw (OPS) method. Oocytes were divided into four experimental groups for cows and four groups for calves: (1) a control group fixed immediately after maturation; (2) an OPS group cryopreserved by conventional OPS; (3) a Taxol/CPA group exposed to 1 ,M Taxol and cryoprotective agents (CPAs); and (4) a Taxol/OPS group vitrified by OPS including 1 ,M Taxol to the vitrification solution. All oocytes were processed for light and transmission electron microscopy. The main injuries were observed on the metaphase plate and the spindle. In control oocytes, the metaphase appeared as condensed chromosomes arranged in a well-organized metaphase plate and the spindle showed well organized microtubules in both cow and calf oocytes. However, in cow OPS oocytes, the metaphase plate was disorganized into scattered chromosomes or the chromosomes were condensed into a single block of chromatin. In addition, microtubules were not organized as typical spindles. In contrast, cow Taxol/OPS oocytes as well as both cow and calf Taxol/CPAs oocytes showed well-organized metaphase plates and normal spindle morphology. All calf OPS and calf Taxol/OPS oocytes displayed a single block of chromatin and no microtubules could be observed around the chromosomes. In conclusion, treatment with 1 µM Taxol before and during vitrification did not induce adverse changes in the oocyte cytoplasm or metaphase spindles in adult bovine oocytes, but stabilized the metaphase and spindle morphology. Mol. Reprod. Dev. 75: 1318,1326, 2008. © 2008 Wiley-Liss, Inc. [source]


A High-Content, Cell-Based Screen Identifies Micropolyin, A New Inhibitor of Microtubule Dynamics

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 6 2009
Manu De Rycker
High-content cell-based screens provide a powerful tool to identify new chemicals that interfere with complex biological processes. Here, we describe the identification of a new inhibitor of microtubule dynamics (micropolyin) using a high-content screen. Integrated high-resolution imaging allowed for fast selection of hits and progression to target identification. Treatment of cells with micropolyin efficiently causes a pro-metaphase arrest, with abnormal spindle morphology and with the spindle assembly checkpoint activated. The arrest appears to result from interference of micropolyin with microtubule dynamics. We show in vitro that tubulin is indeed the target of micropolyin and that micropolyin inhibits microtubule polymerization. Our results demonstrate the power of high-content image- and cell-based screening approaches to identify potential new drug candidates. As our approach is unbiased, it should allow for discovery of new targets that may otherwise be overlooked. [source]