Spindle Microtubules (spindle + microtubule)

Distribution by Scientific Domains


Selected Abstracts


Myosin localization during meiosis I of crane-fly spermatocytes gives indications about its role in division

CYTOSKELETON, Issue 2 2003
Rosalind V. Silverman-Gavrila
Abstract We showed previously that in crane-fly spermatocytes myosin is required for tubulin flux [Silverman-Gavrila and Forer, 2000a: J Cell Sci 113:597,609], and for normal anaphase chromosome movement and contractile ring contraction [Silverman-Gavrila and Forer, 2001: Cell Motil Cytoskeleton 50:180,197]. Neither the identity nor the distribution of myosin(s) were known. In the present work, we used immunofluorescence and confocal microscopy to study myosin during meiosis-I of crane-fly spermatocytes compared to tubulin, actin, and skeletor, a spindle matrix protein, in order to further understand how myosin might function during cell division. Antibodies to myosin II regulatory light chain and myosin II heavy chain gave similar staining patterns, both dependent on stage: myosin is associated with nuclei, asters, centrosomes, chromosomes, spindle microtubules, midbody microtubules, and contractile rings. Myosin and actin colocalization along kinetochore fibers from prometaphase to anaphase are consistent with suggestions that acto-myosin forces in these stages propel kinetochore fibres poleward and trigger tubulin flux in kinetochore fibres, contributing in this way to poleward chromosome movement. Myosin and actin colocalization at the cell equator in cytokinesis, similar to studies in other cells [e.g., Fujiwara and Pollard, 1978: J Cell Biol 77:182,195], supports a role of actin-myosin interactions in contractile ring function. Myosin and skeletor colocalization in prometaphase spindles is consistent with a role of these proteins in spindle formation. After microtubules or actin were disrupted, myosin remained in spindles and contractile rings, suggesting that the presence of myosin in these structures does not require the continued presence of microtubules or actin. BDM (2,3 butanedione, 2 monoxime) treatment that inhibits chromosome movement and cytokinesis also altered myosin distributions in anaphase spindles and contractile rings, consistent with the physiological effects, suggesting also that myosin needs to be active in order to be properly distributed. Cell Motil. Cytoskeleton 55:97,113, 2003. © 2003 Wiley-Liss, Inc. [source]


Mutagenesis of ,-tubulin cysteine residues in Saccharomyces cerevisiae: Mutation of cysteine 354 results in cold-stable microtubules

CYTOSKELETON, Issue 2 2001
Mohan L. Gupta Jr.
Abstract Cysteine residues play important roles in the control of tubulin function. To determine which of the six cysteine residues in ,-tubulin are critical to tubulin function, we mutated the cysteines in Saccharomyces cerevisiae ,-tubulin individually to alanine and serine residues. Of the twelve mutations, only three produced significant effects: C12S, C354A, and C354S. The C12S mutation was lethal in the haploid, but the C12A mutation had no observable phenotype. Based on interactive views of the electron crystallographic structure of tubulin, we suggest that substitution of serine for cysteine at this position has a destabilizing effect on the interaction of tubulin with the exchangeable GTP. The two C354 mutations, although not lethal, produced dramatic effects on microtubules and cellular processes that require microtubules. The C354 mutant cells had decreased growth rates, a slowed mitosis, increased resistance to benomyl, and impaired nuclear migration and spindle assembly. The C354A mutation produced a more severe phenotype than the C354S mutation: the haploid cells had chromosome segregation defects, only 50% of cells in a culture were viable, and a significant percentage of the cells were misshapened. Cytoplasmic microtubules in the C354S and C354A cells were longer than in the control strain and spindle structures appeared shorter and thicker. Both cytoplasmic and spindle microtubules in the two C354 mutants were extremely stable to cold temperature. After 24 h at 4°C, the microtubules were still present and, in fact, very long and thick tubulin polymers had formed. Evidence exists to indicate that the C354 residue in mammalian tubulin is near the colchicine binding site and the electron crystal structure of tubulin places the residue at the interface between the ,- and ,-subunits. The sulfhydryl group is situated in a polar environment, which may explain why the alanine mutation is more severe than the serine mutation. When the C12S and the two C354 mutations were made in a diploid strain, the mutated tubulin was incorporated into microtubules and the resulting heterozygotes had phenotypes that were intermediate between those of the mutated haploids and the wild-type strains. The results suggest that the C12 and C354 residues play important roles in the structure and function of tubulin. Cell Motil. Cytoskeleton 49:67,77, 2001. © 2001 Wiley-Liss, Inc. [source]


PYRENOID FORMATION ASSOCIATED WITH THE CELL CYCLE IN THE BROWN ALGA, SCYTOSIPHON LOMENTARIA (SCYTOSIPHONALES, PHAEOPHYCEAE),

JOURNAL OF PHYCOLOGY, Issue 6 2003
Chikako Nagasato
Vegetative cells of the brown alga Scytosiphon lomentaria (Lyngbye) Link characteristically have only one chloroplast with a prominent protruding pyrenoid, whereas zygotes have both paternal and maternal chloroplasts. In zygotes, before cell and chloroplast division, each chloroplast has an old and a new pyrenoid. In this study, we raised a polyclonal antibody to RUBISCO and examined the distribution of RUBISCO by immunofluorescence microscopy, focusing on new pyrenoid formation in vegetative cells of gametophytes and zygotes in Scytosiphon. In interphase, only one old pyrenoid was positively indicated by anti-RUBISCO antibody in vegetative cells of gametophytes. From mid-S phase, small fluorescence aggregates reflecting RUBISCO localization started to appear at stroma positions other than adjacent to the old protruding pyrenoid. The fluorescent spots eventually coalesced into a protrusion into the adjacent cytoplasm. We also used inhibitors to clarify the relationship between the cell cycle and new pyrenoid formation, using zygotes after fertilization. When DNA replication was blocked by aphidicolin, new pyrenoid formation was also inhibited. Washing out aphidicolin permitted new pyrenoid formation with the progression of the cell cycle. When mitosis was prolonged by nocodazole, which disrupted the spindle microtubules, the fluorescent masses indicating RUBISCO localization continued to increase when compared with pyrenoid formation in untreated zygotes. During treatment with chloramphenicol, mitosis and cytokinesis were completed. However, there was no occurrence of new RUBISCO localization within the chloroplast stroma beyond the old pyrenoid. From these observations, it seems clear that new pyrenoid formation in the brown alga Scytosiphon depends on the cell cycle. [source]


Asymmetric division of spindle microtubules and microfilaments during bovine meiosis from metaphase I to metaphase III

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005
Guang-Peng Li
Abstract The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies. Mol. Reprod. Dev. 71: 220,226, 2005. © 2005 Wiley-Liss, Inc. [source]


Heterochromatin tells CENP-A where to go

BIOESSAYS, Issue 6 2008
Mickaël Durand-Dubief
The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP-A. The epigenetic mechanisms that maintain CENP-A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP-A to naked centromeric DNA templates. In a recent report published in Science,1 such de novo centromere assembly of CENP-A is shown to be dependent on heterochromatin and the RNA interference pathway. BioEssays 30:526,529, 2008. © 2008 Wiley Periodicals, Inc. [source]